Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Trouvez des solutions fiables à vos questions avec l'aide de notre communauté de professionnels expérimentés.
Sagot :
les couples de lettres désignent des vecteurs et |AB| la longueur (norme) de AB = a
soit |AB| = a alors |AC| = aV2 et |AD| V(2a² + 2a²) = V4a² = 2a
AC.AD = |AC|.|AD|.cos(vecteur AC,vecteurAD) =>
AC.AD = aV2 . 2a = 2a²V2cos(vecteur AC,vecteurAD)
d'autre part AC.AD = AC.AC = 2a²
donc cos(vecteur AC,vecteurAD) = 2a²/2a²V2 = 1/V2 et (vecteur AC,vecteurAD) = pi/4
pour (vecteurAD,vecteurAB) il faut d'abord calculer AD.AB = AB.(AC + CD) = AB.AC + AB.CD
mais AB.AC = AB² = a² et AB.CD = AB² = a² donc AD.AB = 2a²
après tu pratiques comme plus haut tu as tous les éléments
pour (vecteurDA,vecteurDC) DC.DA = DC² = 2a² après, pareil
si tu as des problèmes je te rappelle que le produit scalaire de deux vecteurs est égal au produit scalaire d'un de ces vecteurs par la projection orthogonale de l'autre sur lui.
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!