FRstudy.me fournit une plateforme conviviale pour partager et obtenir des connaissances. Découvrez des informations fiables et complètes sur n'importe quel sujet grâce à notre réseau de professionnels bien informés.
Sagot :
(√3 + 3)² = 3 + 6√3 + 9 = 12 + 6√3 cm² qui est donc l'aire du carré.
(√72 + 3√6) * √2 = √(72 * 2) + 3 * √(6 * 2) = √144 + 3 * √12 = 12 + 3 * 2 * √3 = 12 + 6√3 cm² qui est l'aire du rectangle.
Elles sont bien égales.
(√72 + 3√6) * √2 = √(72 * 2) + 3 * √(6 * 2) = √144 + 3 * √12 = 12 + 3 * 2 * √3 = 12 + 6√3 cm² qui est l'aire du rectangle.
Elles sont bien égales.
Bonsoir Oce678
Aire du carré :
[tex](\sqrt{3}+3)^2\\\\=(\sqrt{3})^2+2\times\sqrt{3}\times3+3^2\\\\=3+6\sqrt{3}+9\\\\=\boxed{12+6\sqrt{3}}[/tex]
Aire du rectangle :
[tex](\sqrt{72}+3\sqrt{6})\times\sqrt{2}\\\\=\sqrt{72}\times\sqrt{2}+3\sqrt{6}\times\sqrt{2}\\\\=\sqrt{144}+3\sqrt{12}\\\\=12+3\sqrt{4\times3}\\\\=12+3\sqrt{4}\times\sqrt{3}\\\\=12+3\times2\times\sqrt{3}\\\\=\boxed{12+6\sqrt{3}}[/tex]
Les deux aires sont donc égales à [tex]\boxed{12+6\sqrt{3}\ cm^2}[/tex]
Aire du carré :
[tex](\sqrt{3}+3)^2\\\\=(\sqrt{3})^2+2\times\sqrt{3}\times3+3^2\\\\=3+6\sqrt{3}+9\\\\=\boxed{12+6\sqrt{3}}[/tex]
Aire du rectangle :
[tex](\sqrt{72}+3\sqrt{6})\times\sqrt{2}\\\\=\sqrt{72}\times\sqrt{2}+3\sqrt{6}\times\sqrt{2}\\\\=\sqrt{144}+3\sqrt{12}\\\\=12+3\sqrt{4\times3}\\\\=12+3\sqrt{4}\times\sqrt{3}\\\\=12+3\times2\times\sqrt{3}\\\\=\boxed{12+6\sqrt{3}}[/tex]
Les deux aires sont donc égales à [tex]\boxed{12+6\sqrt{3}\ cm^2}[/tex]
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre allié pour des réponses précises. Merci de nous visiter et à bientôt pour plus de solutions.