Profitez au maximum de vos questions avec les ressources d'FRstudy.me. Que votre question soit simple ou complexe, notre communauté est là pour fournir des réponses détaillées et fiables rapidement et efficacement.
Sagot :
Réponse :
Bonjour,
Explications étape par étape :
Théorème de la médiane:
[tex]AB^2+AC^2=2*AA'^2+\dfrac{BC^2}{2} \\[/tex]
b:
[tex]AB^2+AC^2=2*AA'^2+\dfrac{BC^2}{2} \\BA^2+BC^2=2*BB^2+\dfrac{AC^2}{2} \\CA^2+CB^2=2*CC'^2+\dfrac{AB^2}{2} \\\\[/tex]
On additionne
[tex]2*(AB^2+AC^2+BC^2)=\dfrac{AB^2+AC^2+BC^2}{2}+2*(AA'^2+BB'^2+CC'^2)\\\\\\AB^2+AC^2+BC^2=3*(GA^2+GB^2+GC^2)\\[/tex]
Pour un point M quelconque:
[tex]\overrightarrow{MG}=\dfrac{\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}}{3} \\\\\overrightarrow{MA}=\overrightarrow{MG}+\overrightarrow{GA}\\\overrightarrow{MB}=\overrightarrow{MG}+\overrightarrow{GB}\\\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GC}\\\\MA^2=MG^2+GA^2+2*\overrightarrow{MG}.\overrightarrow{GA}\\MB^2=MG^2+GB^2+2*\overrightarrow{MG}.\overrightarrow{GB}\\MC^2=MG^2+GC^2+2*\overrightarrow{MG}.\overrightarrow{GC}\\[/tex]
[tex]\\MA^2+MB^2+MC^2=3*MG^2+GA^2+GB^2+GC^2+\overrightarrow{MG}.\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\\\\MA^2+MB^2+MC^2=3MG^2+\dfrac{AB^2+AC^2+BC^2}{3}[/tex]
c:
On pose
[tex]f(M)= MA^2+MB^2+MC^2\\\\\boxed{f(M)=3MG^2+\dfrac{AB^2+AC^2+BC^2}{3}}[/tex]
4.
[tex]AB=4,AC=5,BC=6\\\\f(M)=3MG^2+5\\[/tex]
Soit M=(x,y)
Pour la suite, j'ai besoin de temps:
reposte ton exercice car je ne pourrai plus l'éditer.
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.