Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Notre communauté est prête à fournir des réponses détaillées et fiables, que vos questions soient simples ou complexes.
Bonjour à tous , j'ai une question en rapport au complexe. Quand on nous donne la forme algébrique d'un complexe , admettons z=-1+i et que l'on doit démontrer que z^10 est un imaginaire pure positif , peut on simplement calculer l'argument de z^10 ou, arg (z^10) dans ce cas =Pi/2 et dire que cette argument correspond a un imaginaire pure positif vu sa position sur le cercle trigonométrique ?
Ou bien faut il aussi calculer le module lzl^10 et ainsi grâce à la formule z=r(cos + isin ) obtenir la forme algébrique et donc et montrer que l'on a que des "i" et donc que c'est un imaginaire pur positif ?
Je veux savoir si je peux me contenter de l'arg pour gagner du temps au bac dans ce type de question ou bien si il faut vraiment aller jusqu’à trouver la forme algébrique ?
Merci
[tex]z=1+i[/tex] [tex]z^2=(1+i)^2=1+2i+i^2=2i[/tex] [tex]z^{10}=(2i)^5=2^5 \times i^5=32i[/tex] donc [tex]z^{10}[/tex] est un complexe "imaginaire pur" positif
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Merci de choisir FRstudy.me. Revenez bientôt pour découvrir encore plus de solutions à toutes vos questions.