Soit f(x) = - x² + 6x - 1 et g(x) = - (2x + 1)² + 8
1] Montrer que f(x) = - (x - 3)² + 8
- (x - 3)² + 8
= - (x² - 6x + 9) + 8
= - x² + 6x - 9 + 8
= - x² + 6x - 1
= f(x)
2] Résoudre l'équation f(x) = g(x)
f(x) = g(x)
- x² + 6x - 1 = - (2x + 1)² + 8
- x² + 6x - 1 = - (4x² + 4x + 1) + 8
- x² + 6x - 1 = - 4x² - 4x - 1 + 8
- x² + 6x - 1 = - 4x² - 4x + 7
- x² + 4x² + 6x + 4x - 7 - 1 = 0
3x² + 10x - 8 = 0
Δ = b² - 4ac
Δ = 10² - 4 x 3 x (- 8)
Δ = 100 + 96
Δ = 196
√Δ = 14
x₁ = (- 10 - 14)/(2 x 3) = - 24/6 = - 8
x₂ = (- 10 + 14)(2 x 3) = 4/6 = 2/3
S= {- 8 ; 2/3}