a) (cos x - sin x)²
=cos²(x)+sin²(x)-2.cos(x).sin(x)
= 1 - sin(2x)
b)
cosx+cos(x+ 2π/3)+cos (x + 4π/3)
=cos(x)+cos(x).cos(2π/3)-sin(x).sin(2π/3)+cos(x).cos(4π/3)-sin(x).sin(4π/3)
=cos(x)+cos(x).(-1/2)-sin(x).(√3/2)+cos(x).(-1/2)-sin(x).(-√3/2)
=cos(x)-cos(x)
= 0
c) sin ( π/3 + x)
- sin (π/3 -x)
=sin(x).cos(π/3)+cos(x).sin(π/3)-sin(π/3)cos(x)+cos(π/3).sin(x)
=sin(x).1/2+cos(x).√3/2-cos(x).√3/2+1/2.sin(x)
= sin(x)