Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Rejoignez notre plateforme de questions-réponses pour accéder à des réponses détaillées et fiables sur n'importe quel sujet.
Sagot :
Soit x un réel positif ou nul.
Démontrer par récurrence que : Pour tout entier naturel n, (1+x)^n ≥ 1 + nx
Soient
u_n = (1+x)^n
v_n = 1 + nx
1°) Vrai pour un n quelconque?
Pour n = 0
(1+x)^n ≥ 1 + nx
(1+x)^0 ≥ 1 + 0x
(1+x)^0 ≥ 1
(1+x)^0 est bien égal à 1. Donc vrai pour u_0 et v_0.
2°) Vrai pour u_(n+1) et v_(n+1) ?
On suppose que pour un certain entier n :
(1+x)^n ≥ 1 + nx (hypothèse de récurrence)
On va montrer que :
un+1 ≥ vn+1
(1+x)^(n+1) ≥ 1 + (n+1) x
(1+x) (1+x)^n ≥ 1 + nx + x
(1+x) un ≥ vn + x
Or, on a prouvé que u_n ≥ v_n.
De plus, 1+x ≥ x
Donc u_(n+1) ≥ v_(n+1)
Tout est EXACT !...
Démontrer par récurrence que : Pour tout entier naturel n, (1+x)^n ≥ 1 + nx
Soient
u_n = (1+x)^n
v_n = 1 + nx
1°) Vrai pour un n quelconque?
Pour n = 0
(1+x)^n ≥ 1 + nx
(1+x)^0 ≥ 1 + 0x
(1+x)^0 ≥ 1
(1+x)^0 est bien égal à 1. Donc vrai pour u_0 et v_0.
2°) Vrai pour u_(n+1) et v_(n+1) ?
On suppose que pour un certain entier n :
(1+x)^n ≥ 1 + nx (hypothèse de récurrence)
On va montrer que :
un+1 ≥ vn+1
(1+x)^(n+1) ≥ 1 + (n+1) x
(1+x) (1+x)^n ≥ 1 + nx + x
(1+x) un ≥ vn + x
Or, on a prouvé que u_n ≥ v_n.
De plus, 1+x ≥ x
Donc u_(n+1) ≥ v_(n+1)
Tout est EXACT !...
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. FRstudy.me est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.