Calculer sous forme algébrique :
a) z = (3+7i) (5-2i)
=15+35i-6i-14i²
=29+29i
b) z = 3-2i / 4-3i (fraction)
=((3-2i)(4+3i))/((4-3i)(4+3i))
=(18+i)/√(4²+3²)
=18/5+1/5.i
c) z = (2+i√2)² (1-i√2)
=(4+4√2i+2i²)(1-i√2)
=(2+4√2i)(1-√2i)
=2+4*2+4√2i-2√2i
=10+2√2.i
Calculer le module et un argument des complexes :
a) z = 3√2 -3i√2
=6(√2/2-√2/2.i)
=6.e^(-π/4.i)
donc |z|=6 et arg(z)=-π/4 (2π)
b) z= -5i
= 5.e^(-π/2.i)
donc |z|=5 et arg(z)=-π/2 (2π)
c) z = √3 -i
=2(√3/2-1/2.i)
=2.e^(-π/6.i)
donc |z|=2 et arg(z)=-π/6 (2π)