Obtenez des réponses claires et concises à vos questions sur FRstudy.me. Rejoignez notre communauté de connaisseurs pour accéder à des réponses fiables et détaillées sur n'importe quel sujet.
Sagot :
Bonjour Reinaflayfel
[tex](\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=(e^{i\frac{\pi}{6}})^{1999}\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=(e^{i\dfrac{1999\pi}{6}})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(\dfrac{1999\pi}{6})+i\sin(\dfrac{1999\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(\dfrac{2004\pi}{6}-\dfrac{5\pi}{6})+i\sin(\dfrac{2004\pi}{6}-\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(334\pi-\dfrac{5\pi}{6})+i\sin(334\pi-\dfrac{5\pi}{6})[/tex]
[tex]\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(137\times2\pi-\dfrac{5\pi}{6})+i\sin(137\times2\pi-\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(-\dfrac{5\pi}{6})+i\sin(-\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(\dfrac{5\pi}{6})-i\sin(\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=-\cos(\dfrac{\pi}{6})-i\sin(\dfrac{\pi}{6})\\\\\boxed{(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}}[/tex]
[tex](\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=(e^{i\frac{\pi}{6}})^{1999}\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=(e^{i\dfrac{1999\pi}{6}})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(\dfrac{1999\pi}{6})+i\sin(\dfrac{1999\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(\dfrac{2004\pi}{6}-\dfrac{5\pi}{6})+i\sin(\dfrac{2004\pi}{6}-\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(334\pi-\dfrac{5\pi}{6})+i\sin(334\pi-\dfrac{5\pi}{6})[/tex]
[tex]\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(137\times2\pi-\dfrac{5\pi}{6})+i\sin(137\times2\pi-\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(-\dfrac{5\pi}{6})+i\sin(-\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=\cos(\dfrac{5\pi}{6})-i\sin(\dfrac{5\pi}{6})\\\\(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=-\cos(\dfrac{\pi}{6})-i\sin(\dfrac{\pi}{6})\\\\\boxed{(\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}i)^{1999}=-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}}[/tex]
Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Chez FRstudy.me, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.