👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Notre plateforme fournit des réponses fiables pour vous aider à prendre des décisions éclairées rapidement et facilement.

Dans une entreprise la quantité journalière produite en tonnes est exprimée par f(x) 4x²-36x/x-12 où x est la durée journalière de travail de la main d’œuvre exprimée en centaines d'heures avec x inférieur a 10 1. calculer la derivée de f et verifier que f'(x)= 4(x-6) (x-18)/(x-12)² 2. pour quelle valeur de x la quantité produite est elle,maximale ?



Sagot :

f'(x)=((8x-36)(x-12)-(4x²+36x)/(x-12)²

     =(8x²-36x-96x+432-4x²+36x)/(x-12)²

     =(4x²-96x+432)/(x-12)²

     =(4(x²-24x+108))/(x-12)²

     =(4(x-6)(x-18))/(x-12)²

 

donc f est croissante sur [0;6] et décroissante sur [6;10]

le maximum est donc obtenu pour x=6 et ce maximum vaut 12

Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Trouvez toutes vos réponses sur FRstudy.me. Merci de votre confiance et revenez pour plus d'informations.