👤

Trouvez des solutions à vos problèmes avec FRstudy.me. Découvrez des informations fiables et complètes sur n'importe quel sujet grâce à notre plateforme de questions-réponses bien informée.

S'il vous plait aidez moi j'ai vraiment besoin d'aide en maths, la question 1a) et la plus importante apres vous n'etes pas obliger de faire la suite , merci a ceux qui m'aideront ( pas besoin de faire la partie 2)

Sil Vous Plait Aidez Moi Jai Vraiment Besoin Daide En Maths La Question 1a Et La Plus Importante Apres Vous Netes Pas Obliger De Faire La Suite Merci A Ceux Qui class=

Sagot :

Bonjour  Monpetitcoeur72

Exercice 3.

1) a) [tex]U_{n+1}=U_n\times M[/tex]

La matrice M est la suivante : 

[tex]M=\begin{pmatrix} 0,96 & 0\\ 3 & 1 \end{pmatrix}[/tex]

D'où : [tex]\begin{pmatrix} u_{n+1} & 1 \end{pmatrix}=\begin{pmatrix} u_n & 1 \end{pmatrix}\times\begin{pmatrix} 0,96 & 0\\ 3 & 1 \end{pmatrix}[/tex]

[tex]b)\ U_1=U_0\times M\\\\U_1=\begin{pmatrix} 50 & 1 \end{pmatrix}\times\begin{pmatrix} 0,96 & 0\\ 3 & 1 \end{pmatrix}[/tex]

[tex]\boxed{U_1=\begin{pmatrix} 51 & 1 \end{pmatrix}}[/tex]

[tex]U_2=U_1\times M\\\\U_2=\begin{pmatrix} 51 & 1 \end{pmatrix}\times\begin{pmatrix} 0,96 & 0\\ 3 & 1 \end{pmatrix}[/tex]

[tex]\boxed{U_2=\begin{pmatrix} 51,96 & 1 \end{pmatrix}}[/tex]

Par conséquent, 

[tex]\boxed{u_1=51\ \ et\ \ u_2=51,96}[/tex]

[tex]c)\ U_{p+1}=U_p\times M[/tex]

[tex]U_{p+1}=(U_0\times M^p)\times M[/tex]

[tex]U_{p+1}=U_0\times (M^p\times M)[/tex]

[tex]U_{p+1}=U_0\times M^{p+1}[/tex]

D'où  [tex]\boxed{U_n=U_0\times M^n}[/tex]

soit  [tex]\boxed{\begin{pmatrix} u_n & 1 \end{pmatrix}=\begin{pmatrix} 50 & 1 \end{pmatrix}\times\begin{pmatrix} 0,96 & 0\\ 3 & 1 \end{pmatrix}^n}[/tex]

[tex]\begin{pmatrix} u_6 & 1 \end{pmatrix}=\begin{pmatrix} 50 & 1 \end{pmatrix}\times\begin{pmatrix} 0,96 & 0\\ 3 & 1 \end{pmatrix}^6[/tex]

[tex]\begin{pmatrix} u_6 & 1 \end{pmatrix}=\begin{pmatrix} 55,43105526 & 1 \end{pmatrix}[/tex]

D'où  [tex]\boxed{u_6=55,43105526}[/tex]

2) a) [tex]v_n=u_n-75[/tex]

[tex]v_{n+1}=u_{n+1}-75[/tex]

[tex]v_{n+1}=0,96u_{n}+3-75[/tex]

[tex]v_{n+1}=0,96u_{n}-72[/tex]

[tex]v_{n+1}=0,96u_{n}-0,96\times75[/tex]

[tex]v_{n+1}=0,96(u_{n}-75)[/tex]

[tex]v_{n+1}=0,96v_n[/tex]

Par conséquent, la suite (vn) est une suite géométrique de raison 0,96 et dont le premier terme est  [tex]v_0=u_0-75=50-75=-25[/tex]

b) Dès lors,

[tex]v_n=-25\times 0,96^n[/tex]

[tex]u_n-75=-25\times 0,96^n[/tex]

[tex]\boxed{u_n=75-25\times 0,96^n}[/tex]

[tex]c)\ u_6=75-25\times 0,96^6\\\\\boxed{u_6=55,43105526}[/tex]

Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.