Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.
Sagot :
Bonjour houda0638937882
Exercice 1
[tex]1+\tan^2y=1+\dfrac{\sin^2y}{\cos^2y}\\\\1+\tan^2y=\dfrac{\cos^2y}{\cos^2y}+\dfrac{\sin^2y}{\cos^2y}[/tex]
[tex]1+\tan^2y=\dfrac{\cos^2y+\sin^2y}{\cos^2y}\\\\\boxed{1+\tan^2y=\dfrac{1}{\cos^2y}}[/tex]
Exercice 2
[tex]\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{(\cos y-\sin y)(\cos y+\sin y)}{\sin y(\sin y+\cos y)}[/tex]
[tex]\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{\cos y-\sin y}{\sin y}[/tex]
[tex]\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{\dfrac{\cos y}{\cos y}-\dfrac{\sin y}{\cos y}}{\dfrac{\sin y}{\cos y}}[/tex]
[tex]\boxed{\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{1-\tan y}{\tan y}}[/tex]
Exercice 3
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{(1+\cos y)(1-\cos y)}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{1^2-\cos^2 y}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{1-\cos^2 y}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{\sin^2 y}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{\sin y\times \sin y}{\sin y(1-\cos y)}[/tex]
[tex]\boxed{\dfrac{1+\cos y}{\sin y}=\dfrac{\sin y}{1-\cos y}}[/tex]
Exercice 4
.[tex](\tan y-\dfrac{1}{\cos y})^2=(\dfrac{\sin y}{\cos y}-\dfrac{1}{\cos y})^2[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=(\dfrac{\sin y-1}{\cos y})^2[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(\sin y-1)^2}{\cos^2 y}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)^2}{\cos^2 y}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)^2}{1-\sin^2 y}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)^2}{(1+\sin y)(1-\sin y)}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)(1-\sin y)}{(1+\sin y)(1-\sin y)}[/tex]
[tex]\boxed{(\tan y-\dfrac{1}{\cos y})^2=\dfrac{1-\sin y}{1+\sin y}}[/tex]
Exercice 1
[tex]1+\tan^2y=1+\dfrac{\sin^2y}{\cos^2y}\\\\1+\tan^2y=\dfrac{\cos^2y}{\cos^2y}+\dfrac{\sin^2y}{\cos^2y}[/tex]
[tex]1+\tan^2y=\dfrac{\cos^2y+\sin^2y}{\cos^2y}\\\\\boxed{1+\tan^2y=\dfrac{1}{\cos^2y}}[/tex]
Exercice 2
[tex]\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{(\cos y-\sin y)(\cos y+\sin y)}{\sin y(\sin y+\cos y)}[/tex]
[tex]\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{\cos y-\sin y}{\sin y}[/tex]
[tex]\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{\dfrac{\cos y}{\cos y}-\dfrac{\sin y}{\cos y}}{\dfrac{\sin y}{\cos y}}[/tex]
[tex]\boxed{\dfrac{\cos^2 y-\sin^2 y}{\sin^2 y+\sin y\times \cos y}=\dfrac{1-\tan y}{\tan y}}[/tex]
Exercice 3
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{(1+\cos y)(1-\cos y)}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{1^2-\cos^2 y}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{1-\cos^2 y}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{\sin^2 y}{\sin y(1-\cos y)}[/tex]
[tex]\dfrac{1+\cos y}{\sin y}=\dfrac{\sin y\times \sin y}{\sin y(1-\cos y)}[/tex]
[tex]\boxed{\dfrac{1+\cos y}{\sin y}=\dfrac{\sin y}{1-\cos y}}[/tex]
Exercice 4
.[tex](\tan y-\dfrac{1}{\cos y})^2=(\dfrac{\sin y}{\cos y}-\dfrac{1}{\cos y})^2[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=(\dfrac{\sin y-1}{\cos y})^2[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(\sin y-1)^2}{\cos^2 y}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)^2}{\cos^2 y}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)^2}{1-\sin^2 y}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)^2}{(1+\sin y)(1-\sin y)}[/tex]
[tex](\tan y-\dfrac{1}{\cos y})^2=\dfrac{(1-\sin y)(1-\sin y)}{(1+\sin y)(1-\sin y)}[/tex]
[tex]\boxed{(\tan y-\dfrac{1}{\cos y})^2=\dfrac{1-\sin y}{1+\sin y}}[/tex]
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Revenez sur FRstudy.me pour des solutions fiables à toutes vos questions. Merci pour votre confiance.