👤

FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Obtenez des réponses complètes à toutes vos questions de la part de notre réseau d'experts expérimentés.

-Choisir un nombre de départ. -Ajouter 1. -Calculer le carré du résultat obtenu. -Lui soustraire le carrè du nombre de départ. -Ecrire le résultat final. 1) a) Vérifier que lorsque li nombre de départ est 1, on obtenu 3 au résultat final. b) Appliquer ce programme à deux autres nombres de votre choix . 2) Quelle conjecture peut-on faire sur le lien entre le nombre choisi au départ et le résultat final ? La démontrer 3) Quel nombre de départ doit-on choisir pour obtenir un résultat final égal à 15 ? AIDEZ MOI SVP <3



Sagot :


1) a) (1+1)au carré-1 au carré=3

b) 2 le nombre choisi 

(2+1)au carré-2 au carré=5

10 le nombre choisi

(10+1) au carré -10 au carré=21

c) n le nombre choisi

(n+1) au carré -n au carré = n au carré +1-n au carré=1

Le resultat est l'addition de tout les  nombre

3) Pour trouver le nombre de d15 tu fait 15-1=14  et 14/2=7

(7+1) au carré -7 au carré = 15


PAU64
1) a. Nombre de départ : 1
1 + 1 = 2
2² = 4
4 - 1² = 4 - 1 = 3
Résultat : 3

b. Nombre de départ : 9
9 + 1 = 10
10² = 100
100 - 9² = 100 - 81 = 19
Résultat : 19

Nombre de départ : 5
5 + 1 = 6
6² = 36
36 - 5² = 36 - 25 = 11
Résultat : 11

2) On remarque que le résultat est le double ajouté de 1 du nombre de départ.

Pour démontrer cela, prenons "x" comme nombre de départ 

Nombre de départ : x
x + 1 = x + 1
(x + 1)² = x² + 2 * x * 1 + 1² = x² + 2x + 1
x² + 2x + 1 - x² = 2x + 1
Résultat : 2x + 1

On a bien prouvé que le résultat est le double ajouté de 1 du nombre de départ.

3) 2x + 1 = 15
2x = 15 - 1
2x = 14
x = 14/2
x = 7

Lorsque 7 est le nombre de départ, le résultat sera 15.