👤

Découvrez une mine d'informations et obtenez des réponses sur FRstudy.me. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.

Bonjour, comment démontrer que la suite u_n=(1*3*5*...*(2n-1))/(2*4*6*...*(2n)) converge vers 0. On me donne en indice de montrer que 0 < u_n < 1/ racine (2n+1) mais je n'arrive pas au bout de l'hérédité de la récurrence. Merci !!



Sagot :

u_n=(1*3*5*...*(2n-1))/(2*4*6*...*(2n))

       =(1*2*3*...*(2n-1)*(2n))/(2² *4² *6² *...* (2n)²)

       =((2n)!)/((n!)²*2^(2n))

 

u_1=1/2=0,5

u_2=3/8=0,375

u_3=5/16=0,3125

u_4=35/128=0,273438

u_5=63/256=0,246094

 

on conjecture que :

* u est décroissante

* u est convergente vers 0

 

on montre par récurrence que : 0<u_n<1/√(2n+1) :

 

* Initialisation : u_1=1/2 donc 0<u_1<1/√(2*1+1)

 

* Hérédité : on suppose qu'il existe n tel que 0<u_n<1/√(2n+1)

    donc 0<((2n)!)/((n!)²*2^(2n))<1/√(2n+1)

    donc 0*(2n+1)/(4(n+1)²)<*(2n+1)/(4(n+1)²)((2n)!)/((n!)²*2^(2n))<(2n+1)/(4(n+1)²)/√(2n+1)

    donc 0<((2n+1)!)/((n+1)!)²*2^(2n+2))<√(2n+1)/(4(n+1)²)

    donc 0<((2n+1)!)/((n+1)!)²*2^(2n+2))<1/√(2n+3)

    donc 0<u_(n+1)<1/√(2n+3)

 

* Conclusion : ∀ n ∈ IN : 0<u_n<1/√(2n+1)

 

or la suite (1/√(2n+1)) est décroissante et convergente vers 0

d'après le th des "gendarmes" : u converge aussi vers 0

 

de plus, u_n=Γ(n+1/2)/(√π * Γ(n+1))Γ est la fonction "Gamma d'EULER"

 

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Merci de choisir FRstudy.me. Revenez bientôt pour découvrir encore plus de solutions à toutes vos questions.