👤

Obtenez des conseils d'experts et des connaissances communautaires sur FRstudy.me. Posez n'importe quelle question et obtenez une réponse détaillée et fiable de notre communauté d'experts.

bonjour, j'ai un devoir de maths à rendre pour la rentrée mais je ne comprends pas ce qu'on me demande pouvez-vous m'aider s'il vous plaît.

 

1- Déterminer le nombre de solutions du système  7x+6y=409

                                                                                             2x+y=89 puis le résoudre.

 

2-Dans un magasin, toutes les chemises coûtent le même prix x et tous les pantalons le même prix  y.

Une personne achète 4 chemises et 2 pantalons pour un total de 178 euros.

Au moment des soldes, dans ce même magasin, on accorde une remise de 30% sur le prix x d'une chemise et remise de 40% sur le prix y d'un pantalon. Pour l'achat d'une chemise et d'un pantalon, on paie alors 40,9 euros (après remise).

Calculer le prix x d'une chemise et le prix y d'un pantalon avant remise.

 Merci.



Sagot :

1.    Comme le déterminant du système est :

 

                           a × b' − a' × b  =  7 × 1 − 2 × 6

                                                  =  7 − 12

                                                  =  −5

 

      qui est un nombre non nul, ce système admet donc une unique solution.

 

      On a donc :  

 

               {  7x + 6y  =  409

               {  2x + y  =  89

 

               {  7x + 6y  =  409

               {  12x + 6y  =  534

 

      ce qui donne, en soustrayant par parties :     −5x  =  −125       ⇔      x  =  25

 

      d'où   y  =  89 − 2x

                   =  89 − 50

                   =  39

 

 

       [Vérification :    7(25) + 6(39)  =  175 + 234

                                                   =  409

                              2(25) + (39)  =  50 + 39

                                                 =  89]

 

     La solution du système est donc :     S  =  {(25 ; 39)}

 

 

 

 

2.  Nous avons :

     —  4 chemises soit 4x

           et 2 pantalons soit 2y

           font 178 euros, d'où :        2x + y  =  89

     —  1 chemise (avec réduction de 30 %)  soit  (1 − 0,3)x  =  0,7x

           et un pantalon (avec réduction de 40 %) soit  (1 − 0,4)y  =  0,6y

           font 40,9 euros, d'où :        7x + 6y  =  409

 

    Comme on obtient le même système que précédemment, le prix avant remise :

    —  d'une chemise (x) est donc de 25 €

    —  d'un pantalon (y) est donc de 39 €