👤

FRstudy.me est votre ressource incontournable pour des réponses expertes. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts bien informés.

Bonjour j'aurais besoin d'aide pour les exercices 28 et 29 c'est du développement
Merci d'avance


Bonjour Jaurais Besoin Daide Pour Les Exercices 28 Et 29 Cest Du Développement Merci Davance class=

Sagot :

bonsoir

a ) 6 x²

b = 6 x + 2 x²

c = 6 x + 3 x²

a = 16 x²

b = 16 + 8 x + x²

c = x² - 8 x + 16

d = 16 - 8 x + x² 

Exercice 28
a
) (2x)×(3x)
on peut enlever les paren
thèse
=2x×3x

On peut réduire
= 6x²

b) (2x)×(3+x)

On ne peut pas enlever les parenthèses du 3+x parce que sans parenthèses, ça serait le x multiplier par le 2x. Mais on peut enlever les parenthèses du 2x

= 2x ×(3+x)

= 2x × 3 +2x×x

=6x+2x²

c) (2+x) × (3x)

On ne peut pas enlever les parenthèses du 2 +x parce que sans parenthèses, ça serait le x multiplier par le 3x. Mais on peut enlever les parenthèses du 3x

= (2+x3x

=6x+3x²

d) (2+x)×(3-x)

On peut rien enlever car sinon le x serait multiplier par 3 et nous on veut le (2+x) multiplier par le (3-x).

= 2×3 + 2×-x + x×3 - x×x

= 6 -2x + 3x-x²

=6+x-x²

On met dans l′ordre

=-x²+x+6

Exercice 29

a)

(4x

On ne peut pas enlever les parenthèses parce que c′est le 4x qui est au carré, si on enlevait parenthèse, ça sera que le x qui est au carré

= 4x×4x

=16x²

b)

(4+x

Il y a deux méthodes

1ere méthode: identité remarquable

(a+b=a²+2ab+b²

4²+2×4×x+x²

=16 + 8x+x²

2ème méthode: développement double

(4+x

=(4+x)(4+x)

= 16 + 4x +4x+x²

On met dans l′ordre

= x²+8x + 16

Pour la c et la d, c′est pareil sauf que, l′identité remarquable est:

(a-b=a²-2ab+b²