Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Notre communauté est prête à fournir des réponses détaillées et fiables, que vos questions soient simples ou complexes.
Sagot :
Question 1: Le calcul est évident
Question 2: L'écriture obtenue au 1 ne traduit pas la div. euclidienne de (4n - 3)² par 8
car 9 > 8.
On a
(4n - 3)² = 8 (2n² - 3n + 1 ) + 1
Le trinôme entre parenthèse peut s'écrire: (2n - 1)(n-1).
Pour tout n supérieur ou égal à 2 ce produit est supérieur ou égal à 0.
Donc 2n² - 3n + 1 est le quotient de la division euclidienne de (4n - 3)² par 8 avec un reste égal à 1.
Question 3:
(4n - 3)² = 8(2n²-3n) + 9
le reste dans la division euclidienne doit être inférieur au diviseur
donc 9 < 2n²-3
ce qu'on peut écrire: 2n² - 3n - 9 > 0
Le trinôme peut se factoriser en (2n+3)(n-3)
on a donc pour tout n > 3 : 2n² - 3n - 9 >0
Pour tout n supérieur ou égal à 4 : (4n - 3)² peut s'écrire sous la forme 8(2n² - 3n) +9 qui est l'expression de la division euclidienne de (4n - 3)² par ( 2n² - 3n)
Question 2: L'écriture obtenue au 1 ne traduit pas la div. euclidienne de (4n - 3)² par 8
car 9 > 8.
On a
(4n - 3)² = 8 (2n² - 3n + 1 ) + 1
Le trinôme entre parenthèse peut s'écrire: (2n - 1)(n-1).
Pour tout n supérieur ou égal à 2 ce produit est supérieur ou égal à 0.
Donc 2n² - 3n + 1 est le quotient de la division euclidienne de (4n - 3)² par 8 avec un reste égal à 1.
Question 3:
(4n - 3)² = 8(2n²-3n) + 9
le reste dans la division euclidienne doit être inférieur au diviseur
donc 9 < 2n²-3
ce qu'on peut écrire: 2n² - 3n - 9 > 0
Le trinôme peut se factoriser en (2n+3)(n-3)
on a donc pour tout n > 3 : 2n² - 3n - 9 >0
Pour tout n supérieur ou égal à 4 : (4n - 3)² peut s'écrire sous la forme 8(2n² - 3n) +9 qui est l'expression de la division euclidienne de (4n - 3)² par ( 2n² - 3n)
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à bientôt.