👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts bien informés.

Bonsoir, je n'arrive pas à résoudre ce problème, merci de bien vouloir m'aider !

Dans un repère Orthonormé (o;i,j) les points A(2;3), B(-4;2) et C(3;7).
Calculer les coordonnées du point G tel que vecteur GA+vecteurGB+vecteurGC=vecteur 0 (ok doit utiliser la relation de Charles pour écrire le vecteur GA en fonction des vecteurs AB et AC à partir de l'égalité donnée).


Sagot :

Bonjour  Lolitomo

[tex]\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\\\\\overrightarrow{GA}+(\overrightarrow{GA}+\overrightarrow{AB})+(\overrightarrow{GA}+\overrightarrow{AC})=\overrightarrow{0}\\\\\boxed{3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{0}}[/tex]

Or

 
[tex]\overrightarrow{GA}:\ (x_A-x_G;y_A-y_G)=(2-x_G;3-y_G)\\\\\Longrightarrow\boxed{3\overrightarrow{GA}:(6-3x_G;9-3y_G)}\\\\\overrightarrow{AB}:\ (x_B-x_A;y_B-y_A)=(-4-2;2-3)=(-6;-1)\\\\\Longrightarrow\boxed{\overrightarrow{AB}:(-6,-1)}\\\\\overrightarrow{AC}:\ (x_C-x_A;y_C-y_A)=(3-2;7-3)=(1;4)\\\\\Longrightarrow\boxed{\overrightarrow{AC}:(1;4)}[/tex]

D'où 

[tex]3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{0}\\\\\Longleftrightarrow(6-3x_G;9-3y_G)+(-6;-1)+(1;4)=(0;0)\\\\\Longleftrightarrow(6-3x_G-6+1;9-3y_G-1+4)=(0;0)\\\\\Longleftrightarrow(-3x_G+1;12-3y_G)=(0;0)\\\\\left\{\begin{matrix}-3x_G+1=0\\12-3y_G=0\\ \end{matrix}\right.\ \ \ \left\{\begin{matrix}3x_G=1\\3y_G=12\\ \end{matrix}\right.\ \ \ \boxed{\left\{\begin{matrix}x_G=\dfrac{1}{3}\\\\y_G=4\\ \end{matrix}\right.}[/tex]

Par conséquent,

les coordonnées du point G sont (1/3 ; 4)
Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Chez FRstudy.me, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.