Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Notre communauté est là pour fournir les réponses complètes et précises dont vous avez besoin pour prendre des décisions éclairées.
Sagot :
Bonjour
Touteouie
1) Figure en pièce jointe.
2) Puisque le triangle ABM doit être rectangle en B, la relation de Pythagore doit être vérifiée.
Or
[tex]AB^2=(x_B-x_A)^2+(y_B-y_A)^2\\\\AB^2=(-2+4)^2+(\dfrac{5}{2}+\dfrac{3}{2})^2\\\\AB^2=2^2+4^2=4+16\\\\\boxed{AB^2=20}\\\\\\BM^2=(x_M-x_B)^2+(y_M-y_B)^2\\\\BM^2=(0+2)^2+(a-\dfrac{5}{2})^2\\\\BM^2=2^2+(a-\dfrac{5}{2})^2=4+a^2-5a+\dfrac{25}{4}\\\\\boxed{BM^2=a^2-5a+\dfrac{41}{4}}\\\\\\AM^2=(x_M-x_A)^2+(y_M-y_A)^2\\\\AM^2=(0+4)^2+(a+\dfrac{3}{2})^2\\\\AM^2=4^2+(a+\dfrac{3}{2})^2=16+a^2+3a+\dfrac{9}{4}\\\\\boxed{AM^2=a^2+3a+\dfrac{73}{4}}[/tex]
D'où
[tex]AB^2+BM^2=AM^2\\\\\Longleftrightarrow20+a^2-5a+\dfrac{41}{4}=a^2+3a+\dfrac{73}{4}\\\\\Longleftrightarrow a^2-5a-a^2-3a=\dfrac{73}{4}-20-\dfrac{41}{4}\\\\\Longleftrightarrow-8a=-12\\\\\Longleftrightarrow a=\dfrac{-12}{-8}\\\\\Longleftrightarrow\boxed{a=\dfrac{3}{2}}[/tex]
3) Les points B, M et C semblent être alignés.
Démontrons-le.
[tex]\overrightarrow{BM}=(x_M-x_B;y_M-y_B)=(0+2;\dfrac{3}{2}-\dfrac{5}{2})=(2;-1)\\\\\Longrightarrow\boxed{\overrightarrow{BM}\ :\ (2;-1)}\\\\\overrightarrow{BC}=(x_C-x_B;y_C-y_B)=(2+2;\dfrac{1}{2}-\dfrac{5}{2})=(4;-2)\\\\\Longrightarrow\boxed{\overrightarrow{BC}\ :\ (4;-2)}[/tex]
D'où [tex]\overrightarrow{BC}=2\overrightarrow{BM}[/tex]
Les vecteurs [tex]\overrightarrow{BC}[/tex] et [tex]\overrightarrow{BM}[/tex] sont donc colinéaires.
Par conséquent, les points B, M et C sont alignés.
4) Le quadrilatère ABNC est un parallélogramme si et seulement si [tex]\overrightarrow{AB}=\overrightarrow{CN}[/tex]
Or
[tex]\overrightarrow{AB}(x_B-x_A;y_B-y_A)=(-2+4;\dfrac{5}{2}+\dfrac{3}{2})=(2;4)\\\\\Longrightarrow\boxed{\overrightarrow{AB}\ :\ (2;4)}\\\\\\\overrightarrow{CN}(x_N-x_C;y_N-y_C)=(x_N-2;y_N-\dfrac{1}{2})\\\\\Longrightarrow\boxed{\overrightarrow{CN}\ :\ (x_N-2;y_N-\dfrac{1}{2})}[/tex]
D'où
[tex]\overrightarrow{AB}=\overrightarrow{CN}\\\\\Longleftrightarrow(2;4)=(x_N-2;y_N-\dfrac{1}{2})\\\\\Longleftrightarrow\left\{\begin{matrix}x_N-2=2\\\\y_N-\dfrac{1}{2}=4 \end{matrix}\right.\\\\\\\Longleftrightarrow\left\{\begin{matrix}x_N=4\\\\y_N=\dfrac{9}{2} \end{matrix}\right.\\\\\\\Longrightarrow\boxed{N\ :\ (4;\dfrac{9}{2})}[/tex]
5) Le point K est le symétrique du point A par rapport à B signifie que B est le milieu du segment [AK].
D'où
[tex](x_B;y_B)=(\dfrac{x_A+x_K}{2};\dfrac{y_A+y_K}{2})\\\\\\(-2;\dfrac{5}{2})=(\dfrac{-4+x_K}{2};\dfrac{-\dfrac{3}{2}+y_K}{2})\\\\\\\Longrightarrow\left\{\begin{matrix}\dfrac{-4+x_K}{2}=-2\\\\\dfrac{-\dfrac{3}{2}+y_K}{2}=\dfrac{5}{2}\end{matrix}\right.\\\\\\\Longrightarrow\left\{\begin{matrix}-4+x_K=-4\\\\-\dfrac{3}{2}+y_K=5 \end{matrix}\right.\\\\\\\Longrightarrow\left\{\begin{matrix}x_K=0\\\\y_K=\dfrac{13}{2} \end{matrix}\right.\\\\\\\Longrightarrow\boxed{K:(0;\dfrac{13}{2})}[/tex]
[tex]6)\ BK^2=(x_K-x_B)^2+(y_K-y_B)^2\\\\BK^2=(0+2)^2+(\dfrac{13}{2}-\dfrac{5}{2})^2\\\\BK^2=2^2+4^2=4+16\\\\\boxed{BK^2=20}\\\\\\KN^2=(x_N-x_K)^2+(y_N-y_K)^2\\\\KN^2=(4-0)^2+(\dfrac{9}{2}-\dfrac{13}{2})^2\\\\KN^2=4^2+(-2)^2=16+4\\\\\boxed{KN^2=20}\\\\\\BN^2=(x_N-x_B)^2+(y_N-y_B)^2\\\\BN^2=(4+2)^2+(\dfrac{9}{2}-\dfrac{5}{2})^2\\\\BN^2=6^2+2^2=36+4\\\\\boxed{BN^2=40}[/tex]
Le triangle BKN est rectangle en K car la relation de Pythagore est vérifiée.
En effet
[tex]BK^2+KN^2=20+20\\\\BK^2+KN^2=40\\\\\boxed{BK^2+KN^2=BN^2}[/tex]
Le triangle BKN est isocèle car [tex]BK=KN=\sqrt{20}[/tex]
Par conséquent, le triangle BKN est rectangle et isocèle.
7) Les droites (NC) et (AB) sont parallèles et NC = AB car ABNC est un parallélogramme.
Les droites (AB) et (BK) sont parallèles et AB = BK car B est le milieu de [AK].
D'où les droites (NC) et (BK) sont parallèles et NC = BK.
On en déduit que le quadrilatère BCNK est un parallélogramme.
Or BK = KN.
Un parallélogramme ayant deux côtés consécutifs de même longueur est un losange.
Donc le quadrilatère BCNK est un losange..
Mais le triangle BKN est rectangle en K ==> l'angle BKN est un angle droit.
Un losange possédant un angle droit est un carré.
Par conséquent, le quadrilatère BCNK est un carré.
1) Figure en pièce jointe.
2) Puisque le triangle ABM doit être rectangle en B, la relation de Pythagore doit être vérifiée.
Or
[tex]AB^2=(x_B-x_A)^2+(y_B-y_A)^2\\\\AB^2=(-2+4)^2+(\dfrac{5}{2}+\dfrac{3}{2})^2\\\\AB^2=2^2+4^2=4+16\\\\\boxed{AB^2=20}\\\\\\BM^2=(x_M-x_B)^2+(y_M-y_B)^2\\\\BM^2=(0+2)^2+(a-\dfrac{5}{2})^2\\\\BM^2=2^2+(a-\dfrac{5}{2})^2=4+a^2-5a+\dfrac{25}{4}\\\\\boxed{BM^2=a^2-5a+\dfrac{41}{4}}\\\\\\AM^2=(x_M-x_A)^2+(y_M-y_A)^2\\\\AM^2=(0+4)^2+(a+\dfrac{3}{2})^2\\\\AM^2=4^2+(a+\dfrac{3}{2})^2=16+a^2+3a+\dfrac{9}{4}\\\\\boxed{AM^2=a^2+3a+\dfrac{73}{4}}[/tex]
D'où
[tex]AB^2+BM^2=AM^2\\\\\Longleftrightarrow20+a^2-5a+\dfrac{41}{4}=a^2+3a+\dfrac{73}{4}\\\\\Longleftrightarrow a^2-5a-a^2-3a=\dfrac{73}{4}-20-\dfrac{41}{4}\\\\\Longleftrightarrow-8a=-12\\\\\Longleftrightarrow a=\dfrac{-12}{-8}\\\\\Longleftrightarrow\boxed{a=\dfrac{3}{2}}[/tex]
3) Les points B, M et C semblent être alignés.
Démontrons-le.
[tex]\overrightarrow{BM}=(x_M-x_B;y_M-y_B)=(0+2;\dfrac{3}{2}-\dfrac{5}{2})=(2;-1)\\\\\Longrightarrow\boxed{\overrightarrow{BM}\ :\ (2;-1)}\\\\\overrightarrow{BC}=(x_C-x_B;y_C-y_B)=(2+2;\dfrac{1}{2}-\dfrac{5}{2})=(4;-2)\\\\\Longrightarrow\boxed{\overrightarrow{BC}\ :\ (4;-2)}[/tex]
D'où [tex]\overrightarrow{BC}=2\overrightarrow{BM}[/tex]
Les vecteurs [tex]\overrightarrow{BC}[/tex] et [tex]\overrightarrow{BM}[/tex] sont donc colinéaires.
Par conséquent, les points B, M et C sont alignés.
4) Le quadrilatère ABNC est un parallélogramme si et seulement si [tex]\overrightarrow{AB}=\overrightarrow{CN}[/tex]
Or
[tex]\overrightarrow{AB}(x_B-x_A;y_B-y_A)=(-2+4;\dfrac{5}{2}+\dfrac{3}{2})=(2;4)\\\\\Longrightarrow\boxed{\overrightarrow{AB}\ :\ (2;4)}\\\\\\\overrightarrow{CN}(x_N-x_C;y_N-y_C)=(x_N-2;y_N-\dfrac{1}{2})\\\\\Longrightarrow\boxed{\overrightarrow{CN}\ :\ (x_N-2;y_N-\dfrac{1}{2})}[/tex]
D'où
[tex]\overrightarrow{AB}=\overrightarrow{CN}\\\\\Longleftrightarrow(2;4)=(x_N-2;y_N-\dfrac{1}{2})\\\\\Longleftrightarrow\left\{\begin{matrix}x_N-2=2\\\\y_N-\dfrac{1}{2}=4 \end{matrix}\right.\\\\\\\Longleftrightarrow\left\{\begin{matrix}x_N=4\\\\y_N=\dfrac{9}{2} \end{matrix}\right.\\\\\\\Longrightarrow\boxed{N\ :\ (4;\dfrac{9}{2})}[/tex]
5) Le point K est le symétrique du point A par rapport à B signifie que B est le milieu du segment [AK].
D'où
[tex](x_B;y_B)=(\dfrac{x_A+x_K}{2};\dfrac{y_A+y_K}{2})\\\\\\(-2;\dfrac{5}{2})=(\dfrac{-4+x_K}{2};\dfrac{-\dfrac{3}{2}+y_K}{2})\\\\\\\Longrightarrow\left\{\begin{matrix}\dfrac{-4+x_K}{2}=-2\\\\\dfrac{-\dfrac{3}{2}+y_K}{2}=\dfrac{5}{2}\end{matrix}\right.\\\\\\\Longrightarrow\left\{\begin{matrix}-4+x_K=-4\\\\-\dfrac{3}{2}+y_K=5 \end{matrix}\right.\\\\\\\Longrightarrow\left\{\begin{matrix}x_K=0\\\\y_K=\dfrac{13}{2} \end{matrix}\right.\\\\\\\Longrightarrow\boxed{K:(0;\dfrac{13}{2})}[/tex]
[tex]6)\ BK^2=(x_K-x_B)^2+(y_K-y_B)^2\\\\BK^2=(0+2)^2+(\dfrac{13}{2}-\dfrac{5}{2})^2\\\\BK^2=2^2+4^2=4+16\\\\\boxed{BK^2=20}\\\\\\KN^2=(x_N-x_K)^2+(y_N-y_K)^2\\\\KN^2=(4-0)^2+(\dfrac{9}{2}-\dfrac{13}{2})^2\\\\KN^2=4^2+(-2)^2=16+4\\\\\boxed{KN^2=20}\\\\\\BN^2=(x_N-x_B)^2+(y_N-y_B)^2\\\\BN^2=(4+2)^2+(\dfrac{9}{2}-\dfrac{5}{2})^2\\\\BN^2=6^2+2^2=36+4\\\\\boxed{BN^2=40}[/tex]
Le triangle BKN est rectangle en K car la relation de Pythagore est vérifiée.
En effet
[tex]BK^2+KN^2=20+20\\\\BK^2+KN^2=40\\\\\boxed{BK^2+KN^2=BN^2}[/tex]
Le triangle BKN est isocèle car [tex]BK=KN=\sqrt{20}[/tex]
Par conséquent, le triangle BKN est rectangle et isocèle.
7) Les droites (NC) et (AB) sont parallèles et NC = AB car ABNC est un parallélogramme.
Les droites (AB) et (BK) sont parallèles et AB = BK car B est le milieu de [AK].
D'où les droites (NC) et (BK) sont parallèles et NC = BK.
On en déduit que le quadrilatère BCNK est un parallélogramme.
Or BK = KN.
Un parallélogramme ayant deux côtés consécutifs de même longueur est un losange.
Donc le quadrilatère BCNK est un losange..
Mais le triangle BKN est rectangle en K ==> l'angle BKN est un angle droit.
Un losange possédant un angle droit est un carré.
Par conséquent, le quadrilatère BCNK est un carré.
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour plus de solutions.