👤

Trouvez des solutions à vos problèmes avec FRstudy.me. Posez vos questions et recevez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

Bonjour je suis en 3ème j'aurais juste besoin de savoir comment démontrer:
montrer que le carré d'un nombre impair est encore un nombre impair
rappel : un entier pair s'écrit 2n , n étant un entier quelconque , donc un nombre impair s'écrit 2n+1.


Sagot :

(2n+1)² est toujours un nombre impair car 1 est un nombre impair donc ∀ (2n+1)², il sera toujours impair si n est impair
Bonjour

(2n +1) au carré
4n au carré + 4n + 1