👤

FRstudy.me: votre source fiable pour des réponses précises et rapides. Posez vos questions et obtenez des réponses détaillées et bien informées de notre réseau de professionnels dévoués.

bonsoir il ya un exercice que j'arrive pas j'ai besoin de votre aide .
1.peut on determiner un polynome du second degré P(x) tel que P(0)=3 , P(1)=1 et P(-1)=1
2.meme question avec P(0)=2 , P(1)=3 et P(-2)=0
merci d'avance !!


Sagot :

Bonsoir,

Un polynôme du second degré est de la forme P(x)=ax² + bx +c avec [tex]a\neq 0[/tex].

1) P(0)=3
 [tex]a\times 0^2 + b\times 0 + c = 3\\0+0+c=3\\c=3[/tex]

P(x) peut déjà s'écrire sous la forme : [tex]P(x) = ax^2 + bx + 3[/tex].

P(1) = 1
[tex]a\times 1^2 + b\times1 + 3 = 1\\a+b+3=1\\a+b=-2[/tex]

P(-1) = 1
[tex]a\times (-1)^2 + b\times(-1) + 3 = 1\\a-b+3=1\\a-b=-2[/tex]

On additionne membre à membre les deux équations en a et b.

(a+b) + (a-b) = -2 -2
2a = -4
a = -2.

Remplaçons a par (-2) dans la première équation.
-2 + b = -2
b = 0.

Le polynôme est donc : P(x) = -2x² + 3.

*********************************

1) P(0)=2
 [tex]a\times 0^2 + b\times 0 + c = 2\\0+0+c=2\\c=2[/tex]

P(x) peut déjà s'écrire sous la forme : [tex]P(x) = ax^2 + bx + 2[/tex].

P(1) = 3
[tex]a\times 1^2 + b\times1 + 2 = 3\\a+b+2=3\\a+b=1[/tex]

P(-2) = 0
[tex]a\times (-2)^2 + b\times(-2) + 2 = 0\\4a-2b+2=0\\2a-b+1=0\\2a-b=-1[/tex]

On additionne membre à membre les deux équations en a et b.

(a+b) + (2a-b) = 1-1
3a = 0
a = 0.

Remplaçons a par 0 dans la première équation.
0 + b = 1
b = 1

Le polynôme est donc : P(x) = x + 2.
Il n'est donc pas possible de trouver un polynôme du second degré P(x) vérifiant les conditions P(0)=2 , P(1)=3 et P(-2)=0