Rejoignez FRstudy.me et commencez à obtenir les réponses dont vous avez besoin. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts dévoués.
Sagot :
Bonsoir
1) H et B sont à la même hauteur du sol : H est à 3,60 m. Donc AH=8,70-3,60=5,10 m.
Dans le triangle ABH rectangle en H, AH=5,10 m ; AB=40 m ;
sin(ABH)=[tex] \frac{cote oppose}{hypothenuse} [/tex] = [tex] \frac{AH}{AB} [/tex]
= [tex] \frac{5,10}{40} [/tex] = 0,1275
ABH= [tex]sin^{-1} [/tex] (0,1275) =7,33 ≈ 7,3 °
2) sin(ABH)= [tex] \frac{AH}{AB} [/tex]
si ABH=5° :
sin 5° = [tex] \frac{AH}{40} [/tex]
40xsin5° = AH
AH = 40x0,087 ≈ 3,49 m
H est à 3,60 m donc A est à 3,60 + 3,49 = 7,09 m.
1) H et B sont à la même hauteur du sol : H est à 3,60 m. Donc AH=8,70-3,60=5,10 m.
Dans le triangle ABH rectangle en H, AH=5,10 m ; AB=40 m ;
sin(ABH)=[tex] \frac{cote oppose}{hypothenuse} [/tex] = [tex] \frac{AH}{AB} [/tex]
= [tex] \frac{5,10}{40} [/tex] = 0,1275
ABH= [tex]sin^{-1} [/tex] (0,1275) =7,33 ≈ 7,3 °
2) sin(ABH)= [tex] \frac{AH}{AB} [/tex]
si ABH=5° :
sin 5° = [tex] \frac{AH}{40} [/tex]
40xsin5° = AH
AH = 40x0,087 ≈ 3,49 m
H est à 3,60 m donc A est à 3,60 + 3,49 = 7,09 m.
1) on connaît AB = 40m
on connaît AH = 8,70 - 3,6 = 5,10 m
grâce à Pythagore, on peut calculer BH:
AH²+ BH² =AB²
5,10²+ BH² = 40²
BH = sqrt (40²-5,10²) = 39,67 m
2) calcul de l'angle b
tan ^b = [HA]/[HB]
tan ^b = 5,10/39,67
tan ^b = 0,1286
^b= INV tan ^b = 7,33°
3) si l'on veut que l'angle ^b fasse 5°, de combien faut-il abaisser AH?
si ^b = 5 , tan ^b = 0,0875.
donc
[HA]/ [HB] = 0,0875
[HA] = 39,67*0,0875 = 3,47 ( par défaut au centième près.)
3,47 m est la hauteur de [ah], avec une hauteur totale à partir du sol de 3,47 + 5,10m= 8,57 de haut.
Abaissement nécessaire: 8,70 - 5,87 = 2,83 m
on connaît AH = 8,70 - 3,6 = 5,10 m
grâce à Pythagore, on peut calculer BH:
AH²+ BH² =AB²
5,10²+ BH² = 40²
BH = sqrt (40²-5,10²) = 39,67 m
2) calcul de l'angle b
tan ^b = [HA]/[HB]
tan ^b = 5,10/39,67
tan ^b = 0,1286
^b= INV tan ^b = 7,33°
3) si l'on veut que l'angle ^b fasse 5°, de combien faut-il abaisser AH?
si ^b = 5 , tan ^b = 0,0875.
donc
[HA]/ [HB] = 0,0875
[HA] = 39,67*0,0875 = 3,47 ( par défaut au centième près.)
3,47 m est la hauteur de [ah], avec une hauteur totale à partir du sol de 3,47 + 5,10m= 8,57 de haut.
Abaissement nécessaire: 8,70 - 5,87 = 2,83 m
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Merci de choisir FRstudy.me. Revenez bientôt pour découvrir encore plus de solutions à toutes vos questions.