Explorez une multitude de sujets et trouvez des réponses fiables sur FRstudy.me. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.
Sagot :
Salut ,
1) Les coordonnées sont :
A(4;5) B(2;13) C(6;14) D(8;6)
2) dimensions :
AB^2 = (xB - xA)^2 + (yB - yA)^2
AB^2 = (2 - 4)^2 + (13 - 5)^2
AB^2 = (-2)^2 + 8^2
AB^2 = 4 + 64
AB^2 = 68
AB = V68 = V(4 x 17) = 2V17
BC^2 = (xC - xB)^2 + (yC - yB)^2
BC^2 = (6 - 2)^2 + (14 - 13)^2
BC^2 = (4)^2 + 1^2
BC^2 = 16 + 1
BC^2 = 17
BC = V17
CD^2 = (xD - xC)^2 + (yD - yC)^2
CD^2 = (8 - 6)^2 + (6 - 14)^2
CD^2 = (2)^2 + (-8)^2
CD^2 = 4 + 64
CD^2 = 68
CD = V68 = V(4 x 17) = 2V17
DA^2 = (xA - xD)^2 + (yA - yD)^2
DA^2 = (4 - 8)^2 + (5 - 6)^2
DA^2 = (-4)^2 + (-1)^2
DA^2 = 16 + 1
DA^2 = 17
DA = V17
3) vérifier qu’il est rectangulaire :
On a DA = BC et AB = CD
ensuite, pour prouver que c'est un rectangle, on peut calculer les diagonales (comme un rectangle à ses diagonales de mêmes longueurs)
AC^2 = AB^2 + BC^2 = 68 + 17 = 85
DB^2 = DA^2 + AB^2 = 17 + 68 = 85
Les diagonales du quadrilataire ABCD sont bien égales alors ABCD est un rectangle.
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.