👤

Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Accédez à des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Bonsoir, Vous pouvez m'aider.
Etudiez le signe de l'expression A(x) selon valeurs de x

A(x) = -2x + 1/3
A(x) = 1 + x/3


Sagot :

Bonsoir,

1) [tex]-2x+\dfrac{1}{3}>0\Longleftrightarrow -2x>-\dfrac{1}{3}\Longleftrightarrow x <\dfrac{-\dfrac{1}{3}}{-2}\Longleftrightarrow x <\dfrac{1}{6}[/tex]

[tex]-2x+\dfrac{1}{3}=0\Longleftrightarrow -2x=-\dfrac{1}{3}\Longleftrightarrow x =\dfrac{-\dfrac{1}{3}}{-2}\Longleftrightarrow x =\dfrac{1}{6}[/tex]

[tex]-2x+\dfrac{1}{3}<0\Longleftrightarrow -2x<-\dfrac{1}{3}\Longleftrightarrow x >\dfrac{-\dfrac{1}{3}}{-2}\Longleftrightarrow x >\dfrac{1}{6}[/tex]

Donc,

[tex]Si\ \ x\in]-\infty;\dfrac{1}{6}[,\ \ alors\ \ -2x+\dfrac{1}{3}>0\\\\Si\ \ x=\dfrac{1}{6},\ \ alors\ \ -2x+\dfrac{1}{3}=0\\\\Si\ \ x\in]\dfrac{1}{6};+\infty[,\ \ alors\ \ -2x+\dfrac{1}{3}<0[/tex]

2) [tex]1+\dfrac{x}{3}<0\Longleftrightarrow \dfrac{x}{3}<-1\Longleftrightarrow x<-3\\\\1+\dfrac{x}{3}=0\Longleftrightarrow \dfrac{x}{3}=-1\Longleftrightarrow x=-3\\\\1+\dfrac{x}{3}>0\Longleftrightarrow \dfrac{x}{3}>-1\Longleftrightarrow x>-3[/tex]

Donc,

[tex]Si\ x\in]-\infty;-3[,\ \ alors\ \ 1+\dfrac{x}{3}<0\\\\Si\ x=-3,\ \ alors\ \ 1+\dfrac{x}{3}=0\\\\Si\ x\in]-3;+\infty[,\ \ alors\ \ 1+\dfrac{x}{3}>0[/tex]
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.