👤

Obtenez des solutions complètes à vos questions avec FRstudy.me. Nos experts sont prêts à fournir des réponses approfondies et des solutions pratiques à toutes les questions que vous pourriez avoir.

Démontrer que v2 est irrationnel, en utilisant un raisonnement par l'absurde.
Supposons que v2 est un nombre rationnel,
Donc il peut s'écrire sous la forme d'une fraction irréductible
1. a. Justifier qu'alors p^2=2q^2?
où p et q sont des nombres entiers naturels non nuls.
b. En déduire la parité de p^2
Svp aidez moi je suis bloqué​


Sagot :

Réponse :

Démontrer que √2 est irrationnel, en utilisant un raisonnement par l'absurde

1) a) justifier qu'alors p² = 2 q²   (p et q  entiers naturels non nuls)

supposons que √2 est rationnel cela implique qu'il existe deux entiers p et q tel que  √2 = p/q et la fraction p/q  est irréductible

⇔ (√2)² = (p/q)² = p²/q²

donc  2 = p²/q²  ⇒ donc p² = 2 q²

b) en déduire la parité de p²

puisque p² = 2 q²  ce qui signifie que p² est pair  donc on a aussi p est pair

Explications étape par étape

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.