👤

Trouvez des réponses à vos questions avec l'aide de la communauté FRstudy.me. Posez vos questions et recevez des réponses complètes et fiables de la part de notre communauté de professionnels expérimentés.

Bonjour, j'ai besoin d'aide pour cet exercice s'il vous plaît !

Partie I
1)Montrer que pour tout u >−1, ln(1+u)≤u.(*) (on pourra étudier une fonction)
2)Montrer que si x >−1 alors −x/1+x >−1
3)En appliquant l'inégalité (*) à u = −x /1+x, montrer que pour tout x >−1, ln(1+x)≥ x/1+x .(**)
4)Déduire des inégalités (*) et (**) que pour tout entier naturel k non nul,1/k+1 J'ai fait la 1 et 2 mais je bloque à la 3e question.


Sagot :

Réponse :

Explications étape par étape :

■ Ln(1+u) ≤ u

   il faut 1+u > 0 donc u > -1

   étude de Ln(1+u) qui est croissante :

               u --> -1    -0,5     0     1       10       +∞

dériv 1/(1+u) ->  ║     2        1    0,5    0,1       0

       Ln(1+u) -> ║   -0,7      0   0,7    2,3      +∞

   conclusion :

   la courbe associée à la fonction Ln(1+u)

est donc toujours sous la droite d' équation

y = u . Il y a un seul point de contact ( 0 ; 0 ) .

■ x > -1 :

      x --> -1    -0,5     0      1       10      +∞

Ln(1+x) -> ║   -0,7     0     0,7    2,3     +∞

x/(1+x) --> ║     -1       0     0,5    0,9      1

   conclusion :

la courbe associée à Ln(1+x) est donc toujours

au-dessus de la branche d' hyperbole

d' équation y = 1 - 1/(1+x) .

Il y a un seul point de contact .

■ remarque :

n' y aurait-il pas une erreur dans le texte

de Ta question 2°) ?

 

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. FRstudy.me est votre source de réponses fiables. Merci pour votre confiance et revenez bientôt.