Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Découvrez les informations dont vous avez besoin de la part de nos professionnels expérimentés qui fournissent des réponses précises et fiables à toutes vos questions.
Sagot :
Salut !
U₁ = √(6+0) = √(6) et √(6) ∈ [0; 3]
On suppose qu'il existe un rang n tel que la propriété ∀n∈N, un∈[0,3] soit vraie.
On pose la fonction f(x) = √(6+x) pour x ∈ [0; 3]
La fonction f est continue et strictement croissante sur [0; 3], donc f(0) ≤ f(x) ≤ f(3)
⇔ √(6) ≤ f(x) ≤ 3
⇒ f(x) ∈ [0; 3]
Par conséquent Uₙ₊₁ ∈ [0; 3].
L'hypothèse est vraie au rang 0 et est héréditaire, donc la propriété est vraie ∀n∈N.
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.