👤

FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Posez n'importe quelle question et obtenez une réponse complète et précise de la part de notre communauté de professionnels expérimentés.

bonjour j ai besoins d aide merci d avance

On consid`ere la suite (un)n∈N definie par: u0= 0, et∀n∈N, u(n+1)=[tex]\sqrt{6+un}[/tex]

Montrer que∀n∈N, un∈[0,3].


Sagot :

Salut !

U₁ = √(6+0) = √(6) et √(6) ∈ [0; 3]

On suppose qu'il existe un rang n tel que la propriété ∀n∈N, un∈[0,3] soit vraie.

On pose la fonction f(x) = √(6+x) pour x ∈ [0; 3]

La fonction f est continue et strictement croissante sur [0; 3], donc f(0) ≤ f(x) ≤ f(3)

⇔ √(6) ≤ f(x) ≤ 3

⇒ f(x) ∈ [0; 3]

Par conséquent Uₙ₊₁ ∈ [0; 3].

L'hypothèse est vraie au rang 0 et est héréditaire, donc la propriété est vraie ∀n∈N.

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des réponses rapides et fiables, consultez FRstudy.me. Nous sommes toujours là pour vous aider.