👤

FRstudy.me: où la curiosité rencontre la clarté. Posez n'importe quelle question et recevez des réponses bien informées de la part de notre communauté de professionnels expérimentés.

Bonjour j'ai un exercice de math qui me pose probleme pouvez-vous m'aidez ?
On considère les deux paraboles P1 et P2 d'équations respectives y = -2x²+7x-1 et y = 4x²-5x+5.
Montrer que ces deux paraboles admettent une tangente commune en leur point d'intersection .
Merci de bien vouloir m'aider .


Sagot :

Tu as plusieurs techniques, le calcul brut, ou bien la visualisation. On dit dans l'énoncé qu'elles doivent avoir une tangente commune en leur point d'intersection, il n'y en a donc qu'un seul.

Il faut résoudre P1 = P2 donc P1 - P2 = 0, et la solution sera unique, et coupera 1 fois l'axe des abscisses (discriminant nul). De plus, on aura à coup sûr, une identité remarquable.

On a alors P1 - P2 = - 6x^2 + 12x - 6 = -6 (x^2 - 2x + 1) = - 6 (x-1)^2. Comme prévu, on conclut immédiatement que x = 1.

On dérive les 2 équations P1 ' (x) = - 4x + 7 et P2' (x) = 8x - 5. Au point d'abcisse 1, on obtient 3 des 2 côtés. Même point d'intersection, et même coefficient directeur, cela suffit à dire qu'elles admettent une tangente commune.

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.