👤

FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Posez vos questions et obtenez des réponses détaillées et précises de notre communauté d'experts dévoués.

Merci d'avance.
On considère le quart de cercle C de rayon 1 et de centre O ci dessous. ( voir photoOn considère un point M mobile sur le quart de cercle et les points P et Q tels que OPMQ soit un rectangle.

En utilisant des considérations géométriques, déterminer les variations de la fonction A donnant l’aire du rectangle OPMQ en fonction de la valeur x= OP


Merci Davance On Considère Le Quart De Cercle C De Rayon 1 Et De Centre O Ci Dessous Voir PhotoOn Considère Un Point M Mobile Sur Le Quart De Cercle Et Les Poin class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

Dans le triangle OMP rectangle en P , d'après le théorème de Pythagore, on a   OM² = OP² + MP²

donc MP² = OM² - OP² = 1 -x²

MP = √(1-x²)

Donc A(x) = x√(1-x²)

A'(x) = √(1-x²) - x²/√(1-x²) = (1-2x²)/√(1-x²)

Le signe de la dérivée ne dépend que de 1-2x², puisque le dénominateur est positif

1-2x² s'annule pour x = √2/2

donc A'(x) est positive sur [0 ;√2/2] et négative sur [√2/2 ; 1]

Donc A(x) est croissante sur [0 ; √2/2] et décroissante sur [√2/2 ; 1]

L'aire maximum de OPMQ est atteinte pour OP = √2/2

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Chaque question trouve une réponse sur FRstudy.me. Merci et à très bientôt pour d'autres solutions.