👤

FRstudy.me: où la curiosité rencontre la clarté. Notre plateforme est conçue pour fournir des réponses précises et complètes à toutes vos questions, quel que soit le sujet.

Bonjour j'aurais besoin d'aide pour cet exercice en maths s'il vous plaît. Merci
Calculer la dérivée de f_1 (x)=(3x^2+2)×√x (f_1 (x) est définie sur [0;+∞[
Calculer la dérivée de f_2 (x)=(2x+3)^4 (f_2 (x) est définie sur ℝ)
Calculer la dérivée de f_3 (x)=√(4x-2 )(f_3 (x) est définie sur [1/2 ;+∞[


Sagot :

Réponse : Bonsoir,

i)

[tex]\displaystyle f'_{1}(x)=6x\sqrt{x}+\frac{1}{2\sqrt{x}}(3x^{2}+2)=\frac{6x \times 2\sqrt{x}\sqrt{x}+3x^{2}+2}{2\sqrt{x}}=\frac{6x \times 2x+3x^{2}+2}{2\sqrt{x}}\\=\frac{12x^{2}+3x^{2}+2}{2\sqrt{x}}=\frac{15x^{2}+2}{2\sqrt{x}}[/tex]

ii)

[tex]f'_{2}(x)=(2x+3)'4(2x+3)^{3}=2 \times 4(2x+3)^{3}=8(2x+3)^{3}[/tex]

iii)

[tex]\displaystyle f'_{3}(x)=(4x-2)'\frac{1}{2\sqrt{4x-2}}=\frac{4}{2\sqrt{4x-2}}=\frac{2}{\sqrt{4x-2}}[/tex]

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Chaque question trouve sa réponse sur FRstudy.me. Merci et à bientôt pour d'autres solutions fiables.