FRstudy.me facilite l'obtention de réponses fiables à vos questions. Rejoignez notre communauté de connaisseurs pour accéder à des réponses fiables et détaillées sur n'importe quel sujet.
Sagot :
Réponse : Bonjour,
a)
[tex]\displaystyle \left \{ {{f(x)=x \; si \; x \in [0;+\infty[} \atop {f(x)=-x \; si \; x \in ]-\infty;0]}} \right.[/tex]
b) Je vous laisse afficher la courbe sur votre calculatrice.
On peut conjecturer que la fonction f est décroissante sur ]-∞;0], et que la fonction f est croissante sur [0;+∞[.
c) Démonstration de la conjecture.
i) Sur ]-∞;0], f(x)=-x, f est une fonction linéaire de coefficient directeur -1, et comme -1 < 0, on en déduit que f est décroissante sur ]-∞;0].
ii) Sur [0;+∞[, f(x)=x, f est donc une fonction linéaire de coefficient directeur 1, et comme le coefficient directeur est strictement positif, on en déduit que f est croissante sur [0;+∞[.
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Chaque question trouve sa réponse sur FRstudy.me. Merci et à bientôt pour d'autres solutions fiables.