👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de la part de notre communauté d'experts dévoués.

Bonjour à tous! C'est une question universitaire. Est-ce que vous pouvez m'aider à cette question? Parce que je n'ai pas pu faire. S'il vous plaît. Merci beaucoup :)

Soient a1,a2 et a3 des réels, déterminez la condition que doivent vérifier ces paramètres pour que le polynôme A=x4 (puissance :) )+a1x2+a2x+a3 soit divisible par le polynôme B=x2+2x−1?


Sagot :

Réponse :

Explications étape par étape

x4+a1x2+a2x+a3 =(x2+2x−1)(x²+bx+c)

=      x4+bx3+cx2+2x3+2bx2+2cx-x2-bx-c                      

=x4  + x3 ·(b + 2) + x2 ·(2·b + c - 1) + x·(2·c - b) - c

il faut alors  que

b+2=0              b= -2          

a1=2b+c-1 = c- 5

a2 =2c-b= 2c + 2

a3 = - c

d'où                 a1 = -a3  -5                 a2= -2a3 + 2

exemple    a3 = 2            a1= -7            a2= -2

x4-7x2-2x+2 =(x2+2x−1)(x²-2x-2)