👤

Explorez un monde de connaissances et obtenez des réponses sur FRstudy.me. Trouvez les informations dont vous avez besoin rapidement et facilement grâce à notre plateforme de questions-réponses bien informée.

BESOIN D'AIDE
Bonjour je suis en seconde et j'ai besoin d'aide concernant un DM de maths.

l'énoncé:
Un fabricant produit dans une usine des tee-shirts. On suppose que tous les tee-shirts fabriqués sont vendus. Apres la fabrication et la vente de x centaines de tee-shirts en un mois, le bénéfice net réalisé en centaines d'euros est donné par la fonction: B(x)= -0,5x²+50x-800 pour x strictement supérieur à 0.

questions:

1)Déterminer le bénéfice obtenu pour 4000 tee-shirts produits et vendus.
indice: Les tee-shirts doivent être en centaines et on obtient des centaines d'euros

2)Montrer que B(x)= -0,5(x-50)²+450
indice: Les identités remarquables peuvent aidés

3)En déduire le bénéfice maximal que peut obtenir le fabricant. Pour combien de tee-shirts fabriqués et vendu est il atteint ?
indice: Le bénéfice doit être positif commencez par montrer que 0,5(x-50)² est négatif alors pour que le bénéfice soit maximal il faut que ....=0


Sagot :

Réponse :

1) 400 centaines €

2) voir explications

3) tee-shirts = 50 centaines,   bénéfice = 450 centaines €

Explications étape par étape

1) d'abord 4000 / 100 = 40 centaines tee-shirts

puis remplacer x = 40

-0.5 * 40^2 + 50 * 40 - 800 = -0.5 * 1 600 + 2 000 - 800 = -800 + 2 000 - 800

= 2 000 - 1600 = 400 centaines €

2) B(x) = -0.5 ( x-50)^2 + 450

   B(x) = -0.5 * ((x - 50)^2 + 900) c'est de la forme a^2 - b^2

donc -1/2 * ((x-50)^2 - 30^2)

-1/2 * (x-50-30) * (x-50+30) = -1/2 * (x-80) * (x-20)

on développe -1/2 * (x^2 - 100x +1 600) = -0.5x^2 + 50x - 800

donc B(x) = -0.5 * (x-50)^2 + 450

3) identifions les coefficients a et b dans B(x),

a = -0.5 et b = 50

calculons l'abscisse du sommet en faisant ( -b/2a) ce qui fait (-50)/(2*-0.5)

= (-50)/-1 = 50

on remplace x par 50

calculons -0.5 * 50^2 + 50 * 50 - 800 = -0.5 * 2500 + 2500 - 800 =

-1250 +2500 - 800 = -2050 + 2500 = 450

conclusion

il faut vendre 50 centaines de tee-shirts pour avoir 450 centaines €, c-à-d le bénéfice maximal