👤

FRstudy.me facilite l'obtention de réponses détaillées à vos questions. Rejoignez notre plateforme de questions-réponses pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Bonjour, j’aurais besoin d’aide pour résoudre les deux 1er équations. Je suis en terminale.
Je vous met les équations en pièce jointe.
MerciII


Bonjour Jaurais Besoin Daide Pour Résoudre Les Deux 1er Équations Je Suis En Terminale Je Vous Met Les Équations En Pièce Jointe MerciII class=

Sagot :

Explications étape par étape:

Bonjour, en premier lieu, il te faut définir le domaine de définition de ton équation, avant d'exhiber les solutions.

(E1) est définie si et seulement si x+2 > 0, 5-2x > 0 et x+3 > 0. (les 3 conditions devant être réunies)

x+2 > 0 équivaut à x > - 2, 5-2x > 0 équivaut à x < 5/2 et x+3 > 0 équivaut à x > - 3. Par conséquent, l'ensemble de définition sera D = ]-2 ; 5/2 [.

En passant par l'exponentielle, on déduit que (x+2) / (5-2x) = x+3, qui équivaut à x+2 = (5-2x)(x+3) = -2x^2 - x + 15, d'où 2x^2 + 2x - 13 = 0.

Le discriminant vaut 4 + (13x2x4) = 56.

2 solutions, x1 = (-2 - rac(56)) / 4 = (-1 - rac(14)) / 2 ou x2 = (-2 + rac(56))/4 = (-1 + rac(14)) / 2.

La 1re ne convient pas, donc une seule solution, S = {x2}.

2) Même raisonnement, (E2) définie si et seulement si x^2 - 1 > 0 et 4x-1 > 0 d'où x < - 1 ou x > 1 et x > 1/4. Il en résulte donc que le domaine de définition est D = ] 1; + infini[.

Sur cet intervalle, par la forme exponentielle, on obtient x^2 - 1 <= (4x-1) / 4 par croissance de la fonction exponentielle. Donc 4x^2 - 4 <= 4x-1, d'où 4x^2 - 4x - 3 <= 0.

Le discriminant vaut 16 + 48 = 64.

Ainsi, un intervalle solution, [-1/2; 3/2].

Conclusion, l'ensemble des solutions est S = ] 1 ; 3/2]

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre guide de confiance pour des solutions rapides et efficaces. Revenez souvent pour plus de réponses.