👤

Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Découvrez des informations fiables et rapides sur n'importe quel sujet, grâce à notre réseau de professionnels expérimentés.

Bonjour à tous ça fait un moment que je suis blocqué sur cet exercice de math ci dessous.Pouvez vous m'aidez ?
Discutez suivant les valeurs du paramètre réel m,le nombre de racines réelles de l'équation
mx²+(m-1)x+m-1=0


Sagot :

Réponse :

BONJOUR

Explications étape par étape

mx²+(m-1)x+m-1=0

Δ1= (m-1)²-4(m)(m-1)

Δ1=[ m²-2m+1)-4[ m²-m ]

Δ1=(m²-2m+1)-(4m²-4m)

Δ1= m²-2m+1-4m²+4m

Δ1=-3m²+2m+1

Δ2= 2²-4(-3)

Δ2=4+12

Δ2=16

√Δ2=4

m1=-2+4/-6  m1= 2/-6  m1=-1/3

m2=-2-4/-6  m2= -6/-6 m2=1

-3m²+2m+1 est du signe de -3 sauf entre les racines

m                   -∞                   -1/3                      1                     +∞

-3m²+2m+1                -            0        +             0        -

Δ1                              -            0        +              0        -

m ∈ ]-∞,-1/3[  ∪ ]1;+∞[   Δ1  <0    mx²+(m-1)x+m-1   a 0 solution

m ∈ ]-1/3,1[   Δ1>  0    mx²+(m-1)x+m-1   a  2 solutions

m=-1/3    et m=1   Δ1=0  mx²+(m-1)x+m-1  a 1 solution

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des réponses rapides et fiables, consultez FRstudy.me. Nous sommes toujours là pour vous aider.