Obtenez des conseils d'experts et des connaissances communautaires sur FRstudy.me. Notre plateforme de questions-réponses offre des réponses fiables et complètes pour garantir que vous avez les informations dont vous avez besoin pour réussir dans n'importe quelle situation.
Sagot :
Réponse :
Salut !
1. a. Tu dérives ta fonction pour trouver que g'(x) = 1+1/x > 0, donc g est strictement croissante sur R+.
b. De plus g(1) = 0 (tu peux le vérifier par le calcul), donc g étant croissante, g(x) < 0 quand x < 1 et g(x) > 0 quand x > 1.
2. a. En 0 tu sais que (x-1)/x = (1-1/x) tend vers - l'infini, de même que ln x.
En + l'infini tu sais que (x-1)/x tend vers 1 et ln x vers + l'infini.
Cf cours pour la réponse à la 2e question.
b. En dérivant tu trouves que
[tex]f'(x) = \frac 1{x^2} \ln x -\frac 1 x + \frac{1}{x^2}[/tex]
Donc je te laisse calculer ce que vaut x²f'(x)...
c. Tu connais le signe de g(x) donc celui de f'(x) qui est le même (x² > 0). A toi de jouer pour le tableau de variations, tu as ce qu'il faut normalement.
Explications étape par étape
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Pour des réponses claires et rapides, choisissez FRstudy.me. Merci et revenez souvent pour des mises à jour.