👤

FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Posez n'importe quelle question et obtenez une réponse complète et précise de la part de notre communauté de professionnels expérimentés.

bonjour pouvez vous m'aider à comparer l'expression si dessous à 2 sachant que x et y sont des nombres réels et que x>0 et y>0​

Bonjour Pouvez Vous Maider À Comparer Lexpression Si Dessous À 2 Sachant Que X Et Y Sont Des Nombres Réels Et Que Xgt0 Et Ygt0 class=

Sagot :

Tenurf

Réponse :

Explications étape par étape

bjr

nous avons

[tex](x+y)^2\geq 4xy[/tex]

car

[tex](x+y)^2-4xy=x^2+2xy+y^2-4xy = (x-y)^2\geq 0[/tex]

et donc, pour x>0 et y>0

[tex]\dfrac{(x+y)^2}{xy}\geq 4\\\\\dfrac{x+y}{\sqrt{xy}}\geq 2\\\\\dfrac{(x+y)\sqrt{xy}}{xy}\geq 2[/tex]

car |x+y|=x+y comme x>0 et y>0

Merci

Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre confiance et revenez souvent.