👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts bien informés.

Bonjour j'aimerais de l'aide sur un DM en mathématique la consigne est la suivante:
ABCD est un rectangle. AB=6 ; BC=10
BM=CN=DO=AP
On pose BM=x On note A(x) l'aire de MNOP.

1°) Quelles sont les valeurs possibles pour x ?

2°) Montrer que A(x) = 2x^-16x+60

3°) Déterminer les valeurs de x pour lesquelles l'aire A(x) est maximale ou minimale.
Quelles est la valeur de cette aire minimale ?
4°) Pour quelles valeurs de x l'aire de la partie non hachurée est-elle supérieure a 30?
Merci d'avance a ceux qui m'aiderons.


Sagot :

Réponse :

1) quelles sont les valeurs possibles pour x

             x ∈ [0 ; 10]

2) Montrer que A(x) = 2 x² - 16 x + 60

A(x) = 60 - [2 * (1/2(x*(6 - x) + 2*(1/2(x*(10 - x)]

       = 60 - (x(6 -x) + x(10 - x))

       = 60 - (6 x - x² + 10 x - x²)

       = 60 - (16 x - 2 x²)

       = 60 - 16 x + 2 x²

3) déterminer les valeurs de x pour lesquelles l'aire  A(x) est maximale ou minimale ?

 A(x) = 2 x² - 16 x + 60

        = 2(x² - 8 x + 30)

        = 2(x² - 8 x + 30 + 16 - 16)

        = 2(x² - 8 x + 16 + 14)

        = 2((x - 4)² + 14)

        = 2(x - 4)² + 28

   A(x) est minimale pour  x = 4

4) je ne peux répondre à cette question car je ne sais où se trouve la partie hachurée ( manque le dessin)      

Explications étape par étape