Bonsoir,
1) [tex]g(x)=2x-3[/tex]
a) [tex]g(x+3)=2(x+3)-3\\g(x+3)=2x+6-3\\g(x+3)=2x+3\\\\\\g(x+3)-g(x)=(2x+3)-(2x-3)\\g(x+3)-g(x)=2x+3-2x+3\\\boxed{g(x+3)-g(x)=6}[/tex]
Lorsque x augmente de 3, g(x) augmente de 6.
b) [tex]g(x-5)=2(x-5)-3\\g(x-5)=2x-10-3\\g(x-5)=2x-13\\\\\\g(x-5)-g(x)=(2x-13)-(2x-3)\\g(x-5)-g(x)=2x-13-2x+3\\\boxed{g(x-5)-g(x)=-10}[/tex]
Lorsque x diminue de 5, g(x) diminue de 10.
2) [tex]h(x)=-3x-1[/tex]
a) [tex]h(x+3)=-3(x+3)-1\\h(x+3)=-3x-9-1\\h(x+3)=-3x-10\\\\\\h(x+3)-h(x)=(-3x-10)-(-3x-1)\\h(x+3)-h(x)=-3x-10+3x+1\\\boxed{h(x+3)-h(x)=-9}[/tex]
Lorsque x augmente de 3, h(x) diminue de 9.
b) [tex]h(x-5)=-3(x-5)-1\\h(x-5)=-3x+15-1\\h(x-5)=-3x+14\\\\\\h(x-5)-h(x)=(-3x+14)-(-3x-1)\\h(x-5)-h(x)=-3x+14+3x+1\\\boxed{h(x-5)-h(x)=15}[/tex]
Lorsque x diminue de 5, h(x) augmente de 15.