👤

Connectez-vous avec des experts et des passionnés sur FRstudy.me. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts bien informés.

Bonjour je suis en seconde merci d’avance. 1. Justifier que les inéquations suivantes sont
équivalentes :
(3x + 1)(x - 2) – 3x < 1 et (3x + 1)(x-3)< 0
2. Résoudre l'inéquation (3x + 1)(x - 2) – 3x < 1.


Sagot :

Svant

Réponse:

Bonjour

1)

(3x + 1)(x - 2) – 3x < 1 <=>

(3x + 1)(x - 2) – 3x - 1 < 0 <=>

(3x + 1)(x - 2) – (3x + 1) < 0 <=>

(3x+1)[(x- 2) - 1] < 0 <=>

(3x+1)(x - 3) < 0

2)

On dresse le tableau de signe de (3x+1)(x - 3) :

3x+1 > 0 <=> 3x > -1 <=> x > -⅓

x-3 > 0 <=> x > 3

x |-∞ -⅓ 3 +∞

3x+1 | - 0 + | +

x-3 | - | - 0 +

(3x+1)(x-3) | + 0 - 0 +

Ainsi (3x+1)(x - 3) < 0 equivaut à (3x + 1)(x - 2) – 3x < 1 pour x appartenant à ]-⅓; 3[

Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. FRstudy.me est votre partenaire pour des solutions efficaces. Merci de votre visite et à très bientôt.