👤

Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.

Montrer que la somme de deux nombres entiers impairs
est toujours un nombre entier pair.
Indications : Un nombre entier est impair s'il peut s'écrire sous la forme « 2*
n+ 1 » où n est un nombre entier quelconque.
SVP​


Sagot :

Vins

Réponse :

bonjour

2 n + 1 + 2 n + 5 =  4 n + 6  

donc pair  

Explications étape par étape

Réponse :

Explications étape par étape

Bonjour

Montrer que la somme de deux nombres entiers impairs est toujours un nombre entier pair.

Indications : Un nombre entier est impair s'il peut s'écrire sous la forme « 2*n+ 1 » où n est un nombre entier quelconque

2n + 1 : entier impair

2n + 3 : entier impair

2n + 1 + 2n + 3 = 4n + 4 = 4(n + 1)

Un nombre quelconque multiplié par 4 donne toujours un nombre pair.

Si je prends n = 1 => 4(1 + 1) = 4 x 2 = 8 pair

Si je prends n = 2 => 4(2 + 1) = 4 x 3 = 12 pair