👤

FRstudy.me offre une plateforme conviviale pour trouver et partager des connaissances. Notre plateforme de questions-réponses offre des réponses détaillées et fiables pour garantir que vous avez les informations dont vous avez besoin.

Bonjour je suis en première et je ne comprends pas du tout est-ce que quelqu’un pourrai m’aider s’il vous plaît ? Je vous remercie d’avance

1. Soient u la fonction définie sur R par u(x) = x^2-x , a E R et h≠0
a) Déterminer le taux de variation de u entre a et a+h b) Montrer que u est dérivable en a et déterminer en u’(a)

2. Soit v la fonction définie sur R par v(x) = 2x
Montrer que v est dérivable en a et déterminer le nombre dérivé de v en a .
3. On considère la fonction f définie sur R par f(x) = u(x)+v(x)
a) Déterminer le taux de variation de f entre à et a+h
b) Montrer que f est dérivable en a et determiner f’(a)
c) Calculer u ' (a)+v ' (a) . Que remarque-t-on ?


Sagot :

Tenurf

Bjr,

[tex]u(x)=x^2-x[/tex]

a)

[tex]\dfrac{u(a+h)-u(a)}{a+h-a}\\\\=\dfrac{(a+h)^2-(a+h)-a^2+a}{h}\\\\=\dfrac{a^2+2ah+h^2-a-h-a^2+a}{h}\\\\=\dfrac{h^2+(2a-1)h}{h}\\\\=h+(2a-1)[/tex]

b)

le taux de variation tend vers 2a-1 quand h tend vers 0

donc u est dérivable en a et u'(a)=2a-1

2.

[tex]\dfrac{v(a+h)-v(a)}{a+h-a}\\\\=\dfrac{2a+2h-2a}{h}\\\\=2[/tex]

Donc v est dérivable en a et v'(a)=2

3.

a) en reprenant les résultats précédents

[tex]\dfrac{f(a+h)-f(a)}{a+h-a}\\\\=\dfrac{u(a+h)-u(a)}{h}+\dfrac{v(a+h)-v(a)}{h}\\\\=h+(2a-1)+2\\\\=h+2a+1[/tex]

b)

f est dérivable en a et f'(a)=2a+1

c) c 'est la même chose, u'(a)+v'(a)=f'(a), ce qui est attendu comme la dérivation est un opérateur linéaire

MErci

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.