👤

Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Découvrez des réponses détaillées et précises à toutes vos questions de la part de nos membres de la communauté bien informés.

Bonjour, je n'arrive pas à répondre à la 2ème question. Pouvez-vous m'aider ? On se propose de déterminer toutes les fonctions f, définies sur R, qui sont solutions de l'équation différentielle suivante :
(E): f'(x) - 3f(x) = 3/(1+e^(-3x)) et qui vérifie f(0) = 0.
Soit une fonction f, définie sur R, solution de l'équation différentielle (E).
On désigne par f' sa dérivée.
On note h la fonction définie sur R par h(x) = e^(-3x)f(x).
On désigne par h' la dérivée de h.
1. Exprimer h'(x) en fonction de f'(x) et de f(x) pour tout réel x.
2. Expliquer pourquoi la dérivée h'(x) vérifie, pour tout réel x, h'(x) = (3e^(-3x))/(1+e(-3x))


Sagot :

Réponse : Bonjour,

1) On a:

[tex]\displaystyle h'(x)=-3e^{-3x}f(x)+f'(x)e^{-3x}=e^{-3x}(-3f(x)+f'(x))[/tex]

2) Comme f est solution de (E), alors:

[tex]\displaystyle f'(x)-3f(x)=\frac{3}{1+e^{-3x}}[/tex]

En remplaçant dans l'expression de [tex]h'(x)[/tex]:

[tex]\displaystyle h'(x)=e^{-3x} \frac{3}{1+e^{-3x}}=\frac{3e^{-3x}}{1+e^{-3x}}[/tex]  

Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.