👤

Découvrez une mine d'informations et obtenez des réponses sur FRstudy.me. Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté dévoués.

Bonjour, je suis en spé maths 1ère. Quelqu'un pourrait m'aider à résoudre cette question svp ?
Soit f la fonction définie par f (x)=(2x²+5x-8)/(4x+5)
Existe-t-il des tangentes à la courbe de f ayant pour coefficient directeur 0 ? Justifier votre réponse.​


Sagot :

Réponse :

Explications étape par étape

■ f (x)=(2x²+5x-8)/(4x+5)

 ATTENTION : il faut x ≠ -5/4 .

■ dérivée f ' (x) = [ (4x+5)(4x+5) - 4(2x²+5x-8) ] / (4x+5)²

                        = [ 16x²+40x+25 - 8x² - 10x + 8 ] / (4x+5)²

                        = [ 8x² + 30x + 33 ] / (4x+5)²

 cette dérivée est TOUJOURS positive sur IR - { -5/4 }

 donc la fonction f est toujours croissante sur IR - { -5/4 } .

■ tableau de variation et de valeurs :

   x --> -∞         -2     -1,35    -5/4     -1,14     -1         0      +∞

f ' (x) ->       +    5/9      45      ║          45      11     33/25

f(x) --> -∞       10/3    27,8     ║       -27,8    -11     -8/5     +∞

■ on doit résoudre :

 [ 8x² + 30x + 33 ] / (4x+5)² = 45

   8x² + 30 x + 33 = 45(16x²+40x+25)

   8x² + 30x + 33 = 720x² + 1800x + 1125

   712x² + 1770x + 1092 = 0

   x ≈ - 1,35 ou x ≈ - 1,14 .

■ équation des 2 tangentes :

  y = 45x + 88,55

  y = 45x + 23,5

Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci de visiter FRstudy.me. Nous sommes là pour vous fournir des réponses claires et précises.