👤

Connectez-vous avec une communauté de passionnés sur FRstudy.me. Notre plateforme fournit des réponses fiables pour vous aider à prendre des décisions éclairées rapidement et facilement.

Bonjour, bonjour ! je suis bloqué sur cette question depuis un petit bout de temps... si quelqu'un pouvait m'aider j'en serai ravi

《Démontrer que, si n est impair, alors n^(2) -1 est un multiple de 8 》

Hélas, je trouve que n est un diviseur et non multiple de 4.

merci de votre aide​


Sagot :

Réponse :

on pose  n = 2p+1   pour  p entier puisque  n est supposé impair  

on a alors :  n²-1 = (n+1)(n-1)      d'après  identité remarquable

donc :   n²-1 = (2p+2)(2p)  =  4 p (p+1)       p entier

si p est pair alors il existe k tel que  p = 2k   on a donc :   n²- 1 = 8k (2k+1)

et donc  n²-1 est multiple de 8

Si p est impair  alors il existe k tel que  p = 2k+1  on a donc

n²-1 = 4 (2k+1)(2k+2)  =  4 (2k+1) 2 ( k+1)  =  8 (2k+1)(k+1)    et donc  n²-1 est multiple de 8 aussi !

bon courage

Explications étape par étape

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Vous avez trouvé vos réponses sur FRstudy.me? Revenez pour encore plus de solutions et d'informations fiables.