👤

Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Posez vos questions et recevez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

Bonjour,

Je vous demande de l’aide pour mon exercice de mathématiques !

Merci d’avance pour vos réponses !


Bonjour Je Vous Demande De Laide Pour Mon Exercice De Mathématiques Merci Davance Pour Vos Réponses class=

Sagot :

Réponse :

f(x) = - 2 x    et  g(x) = 2 x²

1) a) démontrer que f est impaire, que peut-on en déduire pour Cf ?

          une fonction est dite impaire  si  f(- x) = - f(x)

         f(- x) = - 2 (- x) = - (- 2 x) = - f(x)     f est donc  impaire

       on en déduit que Cf possède un centre de symétrie qui est l'origine du repère

   b) démontrer que g est paire, que peut-on en déduire pour Cg ?

            une fonction est dite paire  si   g(- x) = g(x)

             g(- x) = 2(- x)² = 2 x² = g(x)   donc  g est paire

          on en déduit que Cg possède un axe de symétrie qui l'axe des ordonnées

2)  résoudre l'équation  g(x) = 2

    a) graphiquement :    S = {- 1 ; 1}

    b) algébriquement :  g(x) = 2  ⇔ 2 x² = 2  ⇔ x² = 1   ⇔ x = - 1 ou  x = 1

3) résoudre l'inéquation  f(x) > 0

  a) graphiquement :   S = ]- 2 ; 0[

  b) algébriquement :  f(x) > 0  ⇔ - 2 x > 0  ⇔ 2 x < 0  ⇔ x < 0  

⇔ l'ensemble des solutions  est   S = ]- 2 ; 0[

4) résoudre l'équation  f(x) = g(x)

   a) graphiquement :   S = {- 1 ; 0}

   b) algébriquement  f(x) = g(x)  ⇔ - 2 x =  2 x²  ⇔ 2 x² + 2 x = 0

⇔ 2 x(x + 1) = 0  ⇔ 2 x = 0  ⇔ x = 0  ou x + 1 = 0  ⇔ x = - 1

5) résoudre l'inéquation  f(x) < g(x)

   a) graphiquement :    S = ]- 2 ; - 1[U]0 ; 2[

   b) algébriquement :   f(x) < g(x)  ⇔ - 2 x < 2 x²  ⇔ 2 x² + 2 x > 0

⇔ 2 x(x + 1) > 0

   Tableau de signes

          x     - 2            - 1               0             2

        2 x             -                -        0       +

       x + 1            -        0      +                 +

          P              +        0      -         0      +

L'ensemble des solutions est :  S = ]-2 ; - 1[U]0 ; 2[  

Explications étape par étape