👤

FRstudy.me facilite l'obtention de réponses fiables à vos questions. Trouvez des réponses détaillées et précises à toutes vos questions de la part de nos membres de la communauté bien informés et dévoués.

Bonjour, j'aurais besoin de votre aide pour cette exercice svp.
Merci d'avance.


Bonjour Jaurais Besoin De Votre Aide Pour Cette Exercice Svp Merci Davance class=

Sagot :

Rico13

Bonjour,

1)

y = Ce^((-1/2)x) avec C ∈ R

a) 1 = Ce^((-1/2)ln 9) avec C ∈ R

   ln 1    =  ln (Ce^((-1/2)ln 9) )

   ln 1    =  ln (C) + ln( e^((-1/2)*ln 9) )

      0    =  ln (C) + (-1/2)*ln 9

   (1/2)*ln 9 =  ln (C)

   e^[(1/2)*ln 9] = C

    C = 3

   la solution particulière de f de (E) est f(x) = 3e^((-1/2)x)

b) f'(x)=(-3/2)e^(-x/2)

   f'(ln 9)  = (-3/2)e^(-ln 9/2) = -1/2

   le coefficient directeur = -1/2

     Lorsque la tangente T à f au point d'abscisse a est tracée, on peut lire son coefficient directeur. Ce coefficient directeur est le nombre dérivé de f en a, c'est-à-dire f'(a) (lu avec la précision permise par le graphique)

3)  g(x) = (1/2)*e^((-1/2)x)  calculons  g'(x) = -(1/4)*e^(-x/2)

    2*g'(x) + g(x) = 0 Vérifions cette égalité :

    2*(-(1/4)*e^(-x/2)) + (1/2)*e^((-1/2)x) = -(1/2)*e^(-x/2) + (1/2)*e^((-x/2))

                                                           = - (1/2)*[ e^(-x/2) - e^(-x/2) ]

                                                            = - (1/2)*[ 0 ]

                                                            = 0

    donc g(x) est bien solution de (E)

 

     Bon courage