Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Découvrez des solutions rapides et complètes à vos problèmes avec l'aide de notre communauté d'experts bien informés.
Bonjour,
Le domaine coloré sur le graphique ci-contre est délimité par une parabole C de sommet S et une droite d. Cette droite d coupe la parabole C en les points A et B. Nous souhaitons calculer l’aire de ce domaine dans l’unité d’aire associée au repère.
- Les coordonnées du point A (-1; 1,5) et S (2;6) et B (4;4)
- Le coefficient directeur de la droite d est a = 1/2
- L’équation réduite de la droite d est y = (1/2) x+2
- L’aire du trapèze ABMN est de 13,75
- La parabole C est la courbe représentative d'une fonction f.
f(x) = 4 + 2x - 0,5x²
c’est une fonction parabolique
- La primitive F de f sur R est F(x) = 4x + x² - 0,5/3 * x³ + C
- la valeur de [tex]\int\limits^4_ {-1}f(x) \, dx[/tex] = F(4) - F(-1) = 21 - (-3) = 24
1)Donner une interprétation de cette intégrale comme une aire
2) En déduire l'aire de la zone coloré.
merci
![Bonjour Le Domaine Coloré Sur Le Graphique Cicontre Est Délimité Par Une Parabole C De Sommet S Et Une Droite D Cette Droite D Coupe La Parabole C En Les Points class=](https://fr-static.z-dn.net/files/d31/647333568b7a310e245112390c5025f7.png)