👤

Explorez un monde de connaissances et obtenez des réponses sur FRstudy.me. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

montrez que :
[tex] \sqrt{2003} + \sqrt{2005}< 2 \times \sqrt{2004} [/tex]
aidez moi svp!​


Sagot :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image Olivierronat

bjr

des nombres positifs et leurs carrés sont rangés dans le même ordre

toutes ces inégalités sont équivalentes

√2003 + √2005 < 2 x √2004                 (on élève au carré)

(√2003 + √2005)² < (2x√2004)²

2003 + 2005 + 2√(2003 x 2005) < 4 x 2004

2 x 2004 + 2√(2003 x 2005) < 4 x 2004

2√(2003+2005)  < 2 x 2004

√(2003 x 2005)  <  2004          (on élève un seconde fois au carré)

2003 x 2005 <2004²

(2004 - 1)(2004 + 1) < 2004²

2004² - 1² < 2004²

vrai

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Vous avez trouvé vos réponses sur FRstudy.me? Revenez pour encore plus de solutions et d'informations fiables.