Découvrez une mine d'informations et obtenez des réponses sur FRstudy.me. Notre plateforme est conçue pour fournir des réponses précises et complètes à toutes vos questions, quel que soit le sujet.
Sagot :
slt
Un artisan fabrique des boîtes à bijoux en bois. Il peut en fabriquer jusqu’à 150 par mois. On suppose que toute la production est vendue
chaque boîte est vendue 50€.
Le coût de fabrication, en euros, de x boîtes est donné par la
fonction C définie sur [0;150] par C(x) = 0,25x² + 17,5 x+300 .
1) Quel est le coût de fabrication de 20 boîtes ?
vous calculez C(20)
2) On note R( x) la recette, en euros, pour x boîtes vendues. Exprimer
R( x) en fonction de x.
on sait que chq boite est vendue 50€
=> R(x) = 50x
3) On note B( x) le bénéfice réalisé, en euros, pour la production et la vente
de x boîtes et on admet que B(x)=R(x) − C(x) . Démontrer que pour tout
x∈[0; 150] ,
B( x) = −0,25x² +32,5x - 300
R(x) = 50x
et C(x) = 0,25x² + 17,5 x+300 .
donc B(x) = 50x - (0,25x² + 17,5 x+300)
vous terminez :)
4) a) Écrire sous la forme canonique.
B( x) = −0,25x² +32,5x - 300
= -0,25 (x² - 130) - 300
= -0,25 [(x - 65)² - 65²] - 300
= - 025 (x - 65)² + 1056,25 - 300
= - 0,25 (x - 65)² + 756,25
b) En déduire le tableau de variations de B sur [0;150].
devant le x² on a -0,25 => parabole en forme de ∩
la courbe est d'abord croissante puis décroissante
changement de sens à son sommet que vous trouvez avec la forme canonique -voir cours
c) En déduire le nombre de boîtes à fabriquer et à vendre pour réaliser un
bénéfice maximal ainsi que le bénéfice maximal.
= coordonnées du sommet
5) a) Démontrer que pour tout x∈[0; 150] , B( x)= −0,25( x−10)( x−120)
vous développez cette expression pour retomber sur B(x) original
b) En déduire le tableau de signes de B sur [0;150].
la courbe va couper l'axe des abscisses en x = 10 et x = 120
donc négative avant 10, positive entre les 2 racines puis de nouveau négatif
c) En déduire combien de boîtes l’artisan doit fabriquer et vendre pour
réaliser un bénéfice positif.
entre 10 et 120 boîtes
Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. FRstudy.me est votre source de réponses fiables. Merci pour votre confiance et revenez bientôt.